六年级奥数第27讲-同余法解题(学)

上传人:hua****011 文档编号:125299 上传时间:2020-03-08 格式:DOC 页数:15 大小:145KB
下载 相关 举报
六年级奥数第27讲-同余法解题(学)_第1页
第1页 / 共15页
六年级奥数第27讲-同余法解题(学)_第2页
第2页 / 共15页
六年级奥数第27讲-同余法解题(学)_第3页
第3页 / 共15页
六年级奥数第27讲-同余法解题(学)_第4页
第4页 / 共15页
六年级奥数第27讲-同余法解题(学)_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3学员姓名:辅导科目:奥数学科教师:授课主题第27讲同余法解题授课类型T同步课堂P实战演练S归纳总结教学目标余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。授课日期及时段T(Textbook-Based)同步课堂知识梳理 一、带余除法的定义及性质一般地,如果a是整数,b是整数(b0),若有ab=qr,也就是abqr, 0rb;我们称上面的除法算式为一个带余除法算式。这里:(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当时:我们称a不可以被b

2、整除,q称为a除以b的商或不完全商二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab ( mod m ),左边的式子叫做同余式。同余式读作:a同余于b,模m。由同余的性质,我们可以得到一个非常重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除

3、用式子表示为:如果有ab ( mod m ),那么一定有abmk,k是整数,即m|(ab)三、中国剩余定理1.中国古代趣题韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人。刘邦茫然而不知其数。 我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少? 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 2.核心思想和方法对于这一类问题,我们有一套看

4、似繁琐但是一旦掌握便可一通百通的方法,下面我们就以孙子算经中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。先由,即5和7的最小公倍数出发,先看35除以3余2,不符合要求,那么就继续看5和7的“下一个”倍数是否可以,很显然70除以3余1类似的,我们再构造一个除以5余1,同时又是3和7的公倍数的数字,显然21可以符合要求。最后再构造除以7余1,同时又是3,5公倍数的数字,45符合要求,那么所

5、求的自然数可以这样计算:,其中k是从1开始的自然数。也就是说满足上述关系的数有无穷多,如果根据实际情况对数的范围加以限制,那么我们就能找到所求的数。例如对上面的问题加上限制条件“满足上面条件最小的自然数”,那么我们可以计算得到所求如果加上限制条件“满足上面条件最小的三位自然数”,我们只要对最小的23加上3,5,7即可,即23+105=128。典例分析 一、带余除法的定义和性质例1、两数相除,商4余8,被除数、除数、商数、余数四数之和等于415,则被除数是_例2、用一个自然数去除另一个自然数,商为40,余数是16.被除数、除数、商、余数的和是933,求这2个自然数各是多少?例3、一个两位数除以1

6、3的商是6,除以11所得的余数是6,求这个两位数二、三大余数定理的应用例1、一个三位数除以17和19都有余数,并且除以17后所得的商与余数的和等于它除以19后所得到的商与余数的和那么这样的三位数中最大数是多少,最小数是多少?例2、被除所得的余数是多少?例3、除以41的余数是多少?例4、求所有的质数P,使得与也是质数例5、甲、乙、丙三数分别为603,939,393某数除甲数所得余数是除乙数所得余数的2倍,除乙数所得余数是除丙数所得余数的2倍求等于多少?三、 余数综合应用例1、设是质数,证明:,被除所得的余数各不相同例2、从1,2,3,n中,任取57个数,使这57个数必有两个数的差为13,则n的最

7、大值为多少? 例3、已知n是正整数,规定,令,则整数m除以2008的余数为多少?例4、有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和。例5、设的各位数字之和为,的各位数字之和为,的各位数字之和为,的各位数字之和为,那么?四、 中国剩余定理例1、一个自然数在1000和1200之间,且被3除余1,被5除余2,被7除余3,求符合条件的数例2、一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为多少? 例3、一个数除以3余2,除以5余3,除以7余4,问满足条件的最小自然数为多少?例4

8、、在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数分别是多少?例5、一个数除以3、5、7、11的余数分别是2、3、4、5,求符合条件的最小的数 P(Practice-Oriented)实战演练实战演练 课堂狙击1、有一个整数,除39,51,147所得的余数都是3,求这个数.2、求的最后两位数3、试求不大于100,且使能被11整除的所有自然数n的和4、将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位1234567891011121320072008,试求这个多位数除以9的余数5、的末三位数是多少

9、?6、有一个数,除以3余2,除以4余1,问这个数除以12余几? 课后反击1、一个两位数除310,余数是37,求这样的两位数。2、求除以7的余数3、若为自然数,证明4、将自然数1,2,3,4依次写下去,若最终写到2000,成为,那么这个自然数除以99余几?5、一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?6、对任意的自然数n,证明能被1897整除 直击赛场 1、(南京市少年数学智力冬令营试题) 与的和除以7的余数是_2、(全国小学数学奥林匹克试题)六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1

10、张,结果发现甲、乙各自手中卡片上的数之和一个人是另个人的2倍,则丙手中卡片上的数是_(第五届小数报数学竞赛初赛) 3、(奥数网杯)已知,问:除以13所得的余数是多少?4、(“华杯赛”试题)3个三位数乘积的算式 (其中), 在校对时,发现右边的积的数字顺序出现错误,但是知道最后一位6是正确的,问原式中的是多少?5、(华杯赛试题)如图,在一个圆圈上有几十个孔(不到100个),小明像玩跳棋那样,从孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔他先试着每隔2孔跳一步,结果只能跳到B孔他又试着每隔4孔跳一步,也只能跳到B孔最后他每隔6孔跳一步,正好跳回到A孔,你知道这个圆圈上共有多少个孔

11、吗? S(Summary-Embedded)归纳总结重点回顾 一、带余除法的定义及性质二、三大余数定理:1.余数的加法定理2.余数的乘法定理3.同余定理四、中国剩余定理1.中国古代趣题2.核心思想和方法名师点拨 弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和

12、除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式迷问题。学霸经验 本节课我学到 我需要努力的地方是

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 小学 > 小学数学 > 奥数 > 六年级