2020版高考数学大一轮复习 第十章 算法、统计与统计案例 10.2 随机抽样

上传人:hua****011 文档编号:121549 上传时间:2020-02-20 格式:DOCX 页数:14 大小:373.48KB
下载 相关 举报
2020版高考数学大一轮复习 第十章 算法、统计与统计案例 10.2 随机抽样_第1页
第1页 / 共14页
2020版高考数学大一轮复习 第十章 算法、统计与统计案例 10.2 随机抽样_第2页
第2页 / 共14页
2020版高考数学大一轮复习 第十章 算法、统计与统计案例 10.2 随机抽样_第3页
第3页 / 共14页
2020版高考数学大一轮复习 第十章 算法、统计与统计案例 10.2 随机抽样_第4页
第4页 / 共14页
2020版高考数学大一轮复习 第十章 算法、统计与统计案例 10.2 随机抽样_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、10.2随机抽样最新考纲考情考向分析1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样的方法.在抽样方法的考查中,系统抽样、分层抽样是考查的重点,题型主要以选择题和填空题为主,属于中低档题.1.简单随机抽样(1)定义:从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数表法.2.系统抽样(1)定义:当总体数量很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的

2、方法叫做系统抽样.(2)系统抽样适用于大规模的抽样调查,由于抽样的间隔相等,因此系统抽样也被称作等距抽样.3.分层抽样(1)分层抽样的定义:在抽样时,将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围:当总体由有明显差别的几个部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.概念方法微思考三种抽样方法有什么共同点和联系?提示(1)抽样过程中每个个体被抽取的机会均等.(2)系统抽样中在起始部分抽样时采用简单随机抽样;分层抽样中各层抽样时采用简单随机抽样或系

3、统抽样.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)简单随机抽样是一种不放回抽样.()(2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(3)抽签法中,先抽的人抽中的可能性大.()(4)系统抽样在第1段抽样时采用简单随机抽样.()(5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()(6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()题组二教材改编2.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名

4、居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案A解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.某公司有员工500人,其中不到35岁的有125人,3549岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为()A.33,34,33 B.25,56,19C.20,40,30 D.30,50,20答案B解析因为12528095255619,所以

5、抽取人数分别为25,56,19.4.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是()A.10 B.11 C.12 D.16答案D解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.题组三易错自纠5.从编号为150的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,6

6、,16,32答案B解析间隔距离为10,故可能的编号是3,13,23,33,43.6.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取的男生人数为_.答案30解析因为男生与女生的比例为18012032,所以应该抽取的男生人数为5030.题型一简单随机抽样例1 (1)某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是()A.这次抽样中可能采用的是简单随机抽样B.这次抽样一定没有采用系统抽样C.这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D.这次抽样中每个女生被抽到的

7、概率小于每个男生被抽到的概率答案A解析利用排除法求解.这次抽样可能采用的是简单随机抽样,A正确;这次抽样可能采用系统抽样,男生编号为120,女生编号为2150,间隔为5,依次抽取1号,6号,46号便可,B错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C和D均错误.(2)福利彩票“双色球”中红球的号码可以从01,02,03,32,33这33个两位号码中选取,小明利用如下所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列的数字开始,从左到右依次读取数据,则第四个被选中的红色球的号码为()81 47 23 68 63 93 17 90 12 69 86 81 62 93 5

8、0 60 91 33 75 85 61 39 8506 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49A.12 B.33 C.06 D.16答案C解析被选中的红色球的号码依次为17,12,33,06,32,22.所以第四个被选中的红色球的号码为06.思维升华 应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或

9、四个作为一个单位,自左向右选取,将超过总体号码或出现重复号码的数字舍去跟踪训练1 (1)在简单随机抽样中,某一个个体被抽到的可能性()A.与第n次有关,第一次可能性最大B.与第n次有关,第一次可能性最小C.与第n次无关,与抽取的第n个样本有关D.与第n次无关,每次可能性相等答案D解析在简单随机抽样中,每个个体被抽到可能性都相等,与第n次无关,D正确.(2)总体由编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699

10、728019832049234493582003623486969387481A.08 B.07 C.02 D.01答案D解析由题意知前5个个体的编号为08,02,14,07,01.题型二系统抽样例2 (1)利用系统抽样法从编号分别为1,2,3,80的80件不同产品中抽取一个容量为16的样本,如果抽出的产品中有一个产品的编号为13,则抽到产品的最大编号为()A.73 B.78 C.77 D.76答案B解析样本的分段间隔为5,所以13号在第三组,则最大的编号为13(163)578.(2)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42

11、人中,编号落入区间481,720的人数为()A.11 B.12 C.13 D.14答案B解析由20,即每20人抽取1人,所以抽取编号落入区间481,720的人数为12.引申探究1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”_被抽到.(填“能”或“不能”)答案不能解析若55被抽到,则55520n,n2.5,n不是整数.故不能被抽到.2.若本例(2)中条件不变,若在编号为481,720中抽取8人,则样本容量为_.答案28解析因为在编号481,720中共有720480240人,又在481,720中抽取8人,所以抽样比应为2408301,又因为单位职工共有840人,所以应抽取的样本容

12、量为28.思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.跟踪训练2 将参加夏令营的600名学生按001,002,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第营区,从301到495在第营区,从496到600在第营区,则三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,

13、9 D.24,17,9答案B解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(kN)组抽中的号码是312(k1).令312(k1)300,得k,因此第营区被抽中的人数是25;令300312(k1)495,得k42,因此第营区被抽中的人数是422517;第营区被抽中的人数为5025178.题型三分层抽样命题点1求总体或样本容量例3 (1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n等于()A.9

14、 B.10 C.12 D.13答案D解析,n13.(2)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为357,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n等于()A.54 B.90 C.45 D.126答案B解析依题意得n18,解得n90,即样本容量为90.命题点2求某层入样的个体数例4 (1)某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:最喜爱喜爱一般不喜欢4 8007 2006 4001 600电视台为了了解观众的具体想法和意见,打算从中抽取100人进行详细的调查,为此要进行分层抽样

15、,那么在分层抽样时,每类人中应抽取的人数分别为()A.25,25,25,25 B.48,72,64,16C.20,40,30,10 D.24,36,32,8答案D解析方法一因为抽样比为,所以每类人中应抽取的人数分别为4 80024,7 20036,6 40032,1 6008.方法二最喜爱、喜爱、一般、不喜欢的比例为4 8007 2006 4001 6006982,所以每类人中应抽取的人数分别为10024,10036,10032,1008.(2)我国古代数学专著九章算术中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣()A.104人

16、B.108人C.112人 D.120人答案B解析由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300300108,故选B.思维升华 分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.跟踪训练3 (1)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n等于()A.860 B.720C.1 020 D.1

17、 040答案D解析分层抽样是按比例抽样的,所以8130,解得n1 040.(2)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_件.答案18解析,应从丙种型号的产品中抽取30018(件).1.某工厂平均每天生产某种机器零件10 000件,要求产品检验员每天抽取50件零件,检查其质量状况,采用系统抽样方法抽取,将零件编号为0000,0001,0002,9999,若抽取的第一组中的号码为0010,则第三组抽取的号码为()A.0210 B.0410C.0610

18、 D.0810答案B解析将零件分成50段,分段间隔为200,因此,第三组抽取的号码为001022000410,故选B.2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是()A.系统抽样 B.分层抽样C.简单随机抽样 D.非以上三种抽样方法答案A解析符合系统抽样的特点,故选A.3.下列抽取样本的方式属于简单随机抽样的个数为()从无限多个个体中抽取100个个体作为样本;盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;从20件玩具中

19、一次性抽取3件进行质量检验;某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0 B.1 C.2 D.3答案A解析不是简单随机抽样.不是简单随机抽样.由于它是放回抽样.不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.4.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250答案A解析方法一由题意可得,解得n100.方法二由题意

20、,得抽样比为,总体容量为3 5001 5005 000,故n5 000100.5.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是()A.3 B.4 C.5 D.6答案B解析第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,

21、151),第七组(152,152,153,153,153),故成绩在139,151上恰有4组,故有4人,故选B.6.已知某地区中小学生人数和近视情况分别如图(1)和图(2)所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.100,10 B.200,10C.100,20 D.200,20答案D解析该地区中小学生总人数为3 5002 0004 50010 000,则样本容量为10 0002%200,其中抽取的高中生近视人数为2 0002%50%20.7.(2018大连模拟)某高中计划从全校学生中按年级采用分层抽样方法抽取

22、20名学生进行心理测试,其中高三有学生900人,已知高一与高二共抽取了14人,则全校学生的人数为()A.2 400 B.2 700 C.3 000 D.3 600答案C8.(2018沈阳模拟)分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在九章算术第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则

23、下列说法错误的是()A.甲应付51钱B.乙应付32钱C.丙应付16钱D.三者中甲付的钱最多,丙付的钱最少答案B解析依题意由分层抽样可知,100(560350180),则甲应付:56051(钱);乙应付:35032(钱);丙应付:18016(钱).9.将某班的60名学生编号为01,02,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是_.答案16,28,40,52解析编号组数为5,间隔为12,因为在第一组抽得04号:41216,161228,281240,401252,所以其余4个号码依次为16,28,40,52.10.某高中在校学生有2 000人

24、.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步abc登山xyz其中abc235,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为_.答案36解析根据题意可知,样本中参与跑步的人数为200120,所以从高二年级参与跑步的学生中应抽取的人数为12036.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1200编号,分为40组,分别为15,610,1962

25、00,若第5组抽取号码为22,则第8组抽取号码为_.若采用分层抽样,40岁以下年龄段应抽取_人.答案3720解析将1200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为223537;由已知条件得,200名职工中40岁以下的职工人数为20050%100,设在40岁以下年龄段中应抽取x人,则,解得x20.12.一个总体中有100个个体,随机编号为0,1,2,99.依编号顺序平均分成10个小组,组号依次为1,2,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码的个位数字与mk的个位数字相同.若m6,则

26、在第7组中抽取的号码是_.答案63解析m6,则在第7组中抽取的号码的个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,69,故在第7组中抽取的号码是63.13.某市教育主管部门为了全面了解2019届高三学生的学习情况,决定对该市参加2019年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是()A.3 B.1 C.4 D.2答案A解析根据系统抽样的特点可知,总体分成8组,组距为4,若抽到的最大编号为31,则最小编号是3.14.为调查德克士

27、各分店的经营状况,某统计机构用分层抽样的方法,从A,B,C三个城市中抽取若干家德克士分店组成样本进行深入研究,有关数据见下表:(单位:个)城市德克士抽取数量A262B13xC39y则样本容量为_.答案6解析设所求的样本容量为n,由题意得,解得n6.15.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的人数有()A.2

28、6 B.39 C.78 D.13答案C解析设持“喜欢”“不喜欢”“一般”态度的人数分别为6x,2x,3x,由题意可得3x2x13,x13,持“喜欢”态度的有6x78(人).16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,则在采用系统抽样时,需要在总体中先剔除2个个体,求n.解总体容量为6121836.当样本容量为n时,由题意知,系统抽样的间隔为,分层抽样的比例是,抽取的工程师人数为6,技术员人数为12,技工人数为18,所以n应是6的倍数,36的约数,即n6,12,18.当样本容量为(n1)时,总体容量剔除以后是34人,系统抽样的间隔为,因为必须是整数,所以n只能取18,即样本容量n18.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习