1、2019-2020学年湖北省武汉市硚口区七年级(上)期末数学试卷一、选择题(本大题共小10题,每小题3分,共30分)1(3分)温度由3上升8是()A5B5C11D112(3分)xa是关于x的方程2a+3x5的解,则a的值是()A1B1C5D53(3分)下列各组式子中,是同类项的是()A2xy2与2x2yB2xy与2yxC3x与x3D4xy与4yz4(3分)如图,公园里修建了曲折迂回的桥,这与修一座直的桥相比,不仅可以容纳更多的游人,而且延长了游客观光的时间,增加了游人的路程,用你所学的数学的知识能解释这一现象的是()A经过一点有无数条直线B两点确定一条直线C两点之间,线段最短D直线最短5(3分
2、)下列等式变形,正确的是()A如果xy,那么B如果axay,那么xyC如果Sab,那么aD如果xy,那么|x3|3y|6(3分)某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A5B6C7D87(3分)一个几何体由若干个相同的正方体组成,它从正面和上面看到的图形如图所示,则这个几何体中正方体的个数最少是()A5B6C7D88(3分)一些相同的房间需要粉刷墙面一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要
3、粉刷的墙面面积为xm2,则下列的方程正确的是()ABC+10D+109(3分)如图,已知O为直线AB上一点,OC平分AOD,BOD4DOE,COE,则BOE的度数为()A3604B1804CD270310(3分)如图,点A、B、C是直线l上的三个定点,点B是线段AC的三等分点,ABBC+4m,其中m为大于0的常数,若点D是直线l上的一动点,M、N分别是AD、CD的中点,则MN与BC的数量关系是()AMN2BCBMNBCC2MN3BCD不确定二、填空题(本大题共6小题,每小题3分,共18分)11(3分)2018年双十一天猫网交易额突破了4300000000元,将数4300000000写成4.31
4、0n的形式,则n 12(3分)如图,货轮O在航行过程中,发现灯塔A在它的南偏东60的方向上同时,在它的北偏东30发现了客轮B则AOB的度数为 13(3分)把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本这个班有多少学生?设这个班有x名学生,则由题意可列方程 14(3分)在直线l上取三个点A、B、C,线段AB的长为3cm,线段BC的长为4cm,则A、C两点的距离是 15(3分)汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米
5、,根据题意列方程为 16(3分)如图,一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点B,爬行的最短路线有 条三、解答题(本大题共8小题,共72分)17(8分)计算:(1)3(2)2+(28)7;(2)(125)(5)18(8分)先化简,再求值x+2(y2x)3(xy2),其中x2,y319(8分)解方程:(1)x3x+1;(2)x2+20(8分)(1)如图1,已知四点A、B、C、D连接AB;画直线BC;画射线CD;画点P,使PA+PB+PC+PD的值最小;(2)如图2,将一副三角板如图摆放在一起,则ACB的度数为 ,射线OA、OB、OC组成的所有小于平角的角的和为 21(8分)如表为某篮球比赛
6、过程中部分球队的积分榜(篮球比赛没有平局)球队比赛场次胜场负场积分A1210222B129321C127519D116517E1113(1)观察积分榜,请直接写出球队胜一场积 分,负一场积 分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共17轮(每个球队各有17场比赛),D队希望最终积分达到30分,你认为有可能实现吗?请说明理由22(10分)一套仪器由一个A部件和三个B部件构成,用1m3钢材可以做40个A部件或240个B部件(1)现要用6m3钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,恰好配成这种仪器多少套?(2)设某公司租赁这批仪
7、器x小时,有两种付费方式方式一:当0x10时,每套仪器收取租金50元;当x10时,超时部分这批仪器整体按每小时300元收费;方式二:当0x15时,每套仪器收取租金60元,当x15时,超时部分这批仪器整体按每小时200元收费请你替公司谋划一下,当x满足,选方式一节省费用一些;当x满足,选方式二节省费用一些23(10分)AOB与它的补角的差正好等于AOB的一半(1)求AOB的度数;(2)如图1,过点O作射线OC,使AOC4BOC,OD是BOC的平分线,求AOD的度数;(3)如图2,射线OM与OB重合,射线ON在AOB外部,且MON40,现将MON绕O顺时针旋转n,0n50,若在此过程中,OP平分A
8、OM,OQ平分BON,试问的值是定值吗?若是,请求出来,若不是,请说明理由24(12分)数轴上A、B两点对应的数分别是4、12,线段CE在数轴上运动,点C在点E的左边,且CE8,点F是AE的中点(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF1,则AB ,AC ,BE ;(2)当线段CE运动到点A在C、E之间时,求BE与CF的数量关系;(3)当点C运动到数轴上表示数14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以同样速度返回,同时点Q从A出发,以每秒1个单位长度的速度向终点B运动,设它们运动的时间为t秒(t16),求t为何值时,P、Q两点间的距离
9、为1个单位长度参考答案与试题解析一、选择题(本大题共小10题,每小题3分,共30分)1【解答】解:根据题意得:3+85,则温度由3上升8是5,故选:A2【解答】解:把xa代入方程,得2a+3a5,所以5a5解得a1故选:A3【解答】解:A、所含字母指数不同,不是同类项,故选项错误;B、所含字母相同,并且相同字母的指数也相同,是同类项,故选项正确;C、所含字母指数不同,不是同类项,故选项错误;D、所含字母不尽相同,不是同类项,故选项错误故选:B4【解答】解:这样做增加了游人在桥上行走的路程,理由:利用两点之间线段最短,可得出曲折迂回的九曲桥增加了游人在桥上行走的路程故选:C5【解答】解:A、a0
10、时,两边都除以a2,无意义,故A错误;B、a0时,两边都除以a,无意义,故B错误;C、b0时,两边都除以b,无意义,故C错误;D、如果xy,那么x3y3,所以|x3|3y|,故D正确;故选:D6【解答】解:商品是按标价的n折销售的,根据题意列方程得:(3000.1n200)2000.05,解得:n7则此商品是按标价的7折销售的故选:C7【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边上层最多有2个,右边下层最多有2个所以图中的小正方体最多8块,最少有6块故选:B8【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得+10故选:D9【解答】解:设DOEx
11、,则BOD4x,BODBOE+EOD,BOE3x,AOD180BOD1804xOC平分AOD,CODAOD(1804x)902xCOECOD+DOE902x+x90x,由题意有90x,解得x90,则BOE2703,故选:D10【解答】解:设坐标轴上的点A为0,C为12m,ABBC+4m,B为8m,BC4m,设D为x,则M为,N为,MN为6m,2MN3BC,故选:C二、填空题(本大题共6小题,每小题3分,共18分)11【解答】解:43000000004.3109故答案为:912【解答】解:AOB180603090故答案为:9013【解答】解:根据题意,得:3x+204x2514【解答】解:当点C
12、在AB的延长线上时,ACBC+AB4+37(cm);当点C在AB的反向延长线上时,ACBCAB431(cm),即A、C两点的距离是7cm或1cm故答案为7cm或1cm15【解答】解:设按喇叭时,汽车离山谷x米,根据题意列方程为 2x2153402故答案为:2x215340216【解答】解:如果要爬行到顶点B,有三种情况:若蚂蚁爬行时经过面AD,可将这个正方体展开,在展开图上连接AB,与棱a(或b)交于点D1(或D2),小蚂蚁线段AD1D1B(或AD2D2B)爬行,路线最短;类似地,蚂蚁经过面AC和AE爬行到顶点B,也分别有两条最短路线,因此,蚂蚁爬行的最短践线有6条故答案为:6三、解答题(本大
13、题共8小题,共72分)17【解答】解:(1)3(2)2+(28)734+(4)12+(4)8;(2)(125)(5)(125)()25+2518【解答】解:原式x+y22xx+y23x+y2,当x2,y3时,原式(3)23296319【解答】解:(1)移项得:xx1+3,合并得:x4,系数化为1得:x8;(2)去分母得:4x(x1)24+2(x3),去括号得:4xx+18+2x6,移项得:4xx2x861,合并得:x120【解答】解:(1)如图,线段AB即为所求的图形;直线BC即为所求作的图形;射线CD即为所求作的图形;连接AC和BD相交于点P,点P即为所求作的点;(2)观察图形可知:ACBA
14、CO+OCB45+90135;射线OA、OB、OC组成的所有小于平角的角的和为150故答案为135、15021【解答】解:(1)观察积分榜,球队胜一场积2分,负一场积1分故答案为:2,1;(2)设E队胜x场,则负(11x)场,可得2x+11x13,解得x2E队胜2场,负9场;(3)不可能实现,理由如下:D队前11场得17分,设后6场胜x场,2x+6x3017,x76,不可能实现22【解答】解:(1)设应用ym3钢材做A部件,用(6y)m3钢材做B部件,则可配成这种仪器40y套,则340y240(6y)解得:y4,6y2,40y160答:应用4m3做A部件,用2m3做B部件,恰好配成160套这种
15、仪器(2)依题意有:50160+300(x10)60160+200(x15),解得x16,故0x16,选方式一节省费用一些;x16,选方式二节省费用一些23【解答】解:(1)设AOBx,依题意得:x(180x)xx120答:AOB的度数是120(2)当OC在AOB的内部时,AODAOC+COD设BOCy,则AOC4y,y+4y120,y24,AOC96,BOC24,OD平分BOC,CODBOC12,AOD96+12108,当OC在AOB外部时,同理可求AOD140,AOD的度数为108或140;(3)MON绕O顺时针旋转n,AOM(120+n)OP平分AOM,AOP()OQ平分BON,MOQB
16、OQ(),POQ120+40+nAOPMOQ,160+n160+n80,AOPBOQ40,24【解答】(1)数轴上A、B两点对应的数分别是4、12,AB16;CE8,CF1,EF7点F是AE的中点AFEF7ACAFCF716BEABAE16722故答案为:16,6,2;(2)点F是AE的中点AFEF设AFFEx,CF8xBE162x2(8x)BE2CF(3)当0t6时,P对应数:6+3t,Q对应数4+tPQ|4+t(6+3t)|2t+2|依题意得:|2t+2|1解得:t或当6t12时,P对应数123(t6)303t,Q对应数4+tPQ|303t(4+t)|4t+34|依题意得:|4t+34|1解得:t或t为秒,秒,秒,秒时,两点距离是1