1、阶段自测卷(一),第二章 函数概念与基本初等函数,一、选择题(本大题共12小题,每小题5分,共60分) 1.(2019太原期中)函数yln x 的定义域是 A.(0,1) B.0,1) C.(0,1 D.0,1,所以函数f(x)的定义域为(0,1.故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,2.(2019凉山诊断)下列函数中,既是奇函数,又在区间(0,1)上递减的函数是 A.ycos x B.y C.ytan x D.yx3,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
2、19,20,21,22,解析 由于ycos x是偶函数,故A不是正确选项.,由于ytan x在(0,1)上为增函数,故C不是正确选项. D选项中yx3既是奇函数,又在(0,1)上递减,符合题意.故选D.,3.(2019晋江四校期中)设函数ylog3x与y3x的图象的交点为(x0,y0),则x0所在的区间是 A.(0,1) B.(1,2) C.(2,3) D.(3,4),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 因为方程log3xx3的解,就是m(x)log3xx3的零点, 因为m(x)log3xx3单调递增且连续,
3、m(x)log3xx3在(1,2)上满足m(1)m(2)0, m(x)log3xx3在(2,3)上满足m(2)m(3)0, 所以m(x)log3xx3的零点在(2,3)内, 可得方程log3xx30的解所在的区间是(2,3), 即则x0所在的区间是(2,3),故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 a 201,,故选B.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
4、16,17,18,19,20,21,22,解析 采用排除法,函数定义域为x|x0且x1,排除A;,7.(2019山师大附中模拟)函数f(x)是R上的偶函数,且f(x1)f(x),若f(x)在1,0上单调递减,则函数f(x)在3,5上是 A.增函数 B.减函数 C.先增后减的函数 D.先减后增的函数,解析 已知f(x1)f(x),则函数周期T2, 因为函数f(x)是R上的偶函数,在1,0上单调递减, 所以函数f(x)在0,1上单调递增, 即函数在3,5上是先减后增的函数.故选D.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,8
5、.(2019新乡模拟)设函数f(x)exex5x,则不等式f(x2)f(x6)0的解集为 A.(3,2) B.(,3)(2,) C.(2,3) D.(,2)(3,),解析 由f(x)exex5x, 得f(x)exex5xf(x), 则f(x)是奇函数,故f(x2)f(x6)x6,解得x3, 故不等式f(x2)f(x6)0的解集为(,2)(3,),故选D.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,9.(2019广东六校模拟)已知f(x)是定义域为(,)的奇函数,满足f(1x)f(1x),若f(1)2,则f(1)f(2)f(
6、3)f(2 019)等于 A.2 018 B.2 C.0 D.50,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 f(x)是定义域为(,)的奇函数, 可得f(x)f(x), f(1x)f(1x)即有f(x2)f(x), 即f(x2)f(x), 进而得到f(x4)f(x2)f(x), f(x)为周期为4的函数, 若f(1)2,可得f(3)f(1)f(1)2, f(2)f(0)0,f(4)f(0)0, 则f(1)f(2)f(3)f(4)20200, 可得f(1)f(2)f(3)f(2 019)50402020. 故选C.,1
7、,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 画出函数f(x)的图象如图所示, 若关于x的方程f(x)a0有两个不相等的实根, 则函数f(x)与直线ya 有两个不同交点, 由图可知1a0,所以0a1.故选C.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,令cos xt1,1,并代入不等式,则问题转化为不等式4t23at50在t1,1上恒成立,
8、,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解析 画出函数f(x)的图象如图所示,根据对称性可知,x1和x2关于x1对称, 故x1x22.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,二、填空题(本大题共4小题,每小题5分,共20分),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,e2,),即ln xln e2,xe2,,14.(2019浏阳六校联考)f(x)是定义在R上的周期为3的奇函
9、数,当0x1时,f(x) 4x,则 f(6)_.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,又f(6)f(0)0,,21,22,2,15.(2019青岛调研)已知函数f(x) f(m)1,则m的取值范围 是_.,解得m2或m0.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,(,0)(2,),16.已知函数f(x) (a0且a1)在R上单调递减,且关于x 的方程|f(x)|2x恰好有两个不相等的实数解,则a的取值范围是_.,1,2,3,4,5,6,7,8,9,10,1
10、1,12,13,14,15,16,17,18,19,20,21,22,解析 画出函数y|f(x)|的图象如图,由函数yf(x)是单调递减函数可知,03aloga(01)1,,所以当x0时,y2x与y|f(x)|图象有且仅且一个交点.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,即方程|f(x)|2x恰好有两个不相等的实数解,结合图象可知当直线y2x与函数yx23a相切时,得x2x3a20.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,三、解答题(本大题共7
11、0分) 17.(10分)(2019酒泉敦煌中学诊断)求下列函数的解析式: (1)已知2f(x1)f(1x)2x21,求二次函数f(x)的解析式;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 设f(x)ax2bxc(a0), 则f(x1)a(x1)2b(x1)c, f(1x)a(1x)2b(1x)c, 所以2f(x1)f(1x)2ax24ax2a2bx2b2c(ax22axabbxc) ax2(2a3b)xa3bc2x21,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,2
12、0,21,22,f(t)(t1)2 (t1). f(x)的解析式为f(x)(x1)2,x1.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,18.(12分)(2019廊坊省级示范高中联考)已知函数f(x)log3(ax2x3). (1)若函数f(x)的定义域为R,求a的取值范围;,解 因为函数的定义域为R,所以ax2x30恒成立, 当a0时,x30不恒成立,不符合题意;,1,2,3,4,5,6,7,8,9,10,1
13、1,12,13,14,15,16,17,18,19,20,21,22,(2)已知集合M1,3,方程f(x)2的解集为N,若MN,求a的取值范围.,解 由题意可知,ax2x39在1,3上有解.,所以a1,7.,19.(12分)函数f(x)对任意的a,bR都有f(ab)f(a)f(b)1,并且当x0时,f(x)1 . (1)判断函数f(x)是否为奇函数;,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 当ab0时,解得f(0)1,显然函数不可能是奇函数.,(2)证明:f(x)在R上是增函数;,1,2,3,4,5,6,7,8,9,
14、10,11,12,13,14,15,16,17,18,19,20,21,22,证明 任取x1,x2R,且x10, f(x2x1)1, f(x2)f(x1)0,f(x)在R上是增函数.,(3)解不等式f(3m2m2)1.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,解 f(0)1,f(3m2m2)1f(0), 又f(x)在R上递增,所以3m2m20,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.(12分)已知定义在R上的函数f(x)是偶函数,当x0时,f(x)x2
15、4x1. (1)求函数f(x)在R上的解析式;,解 设x0f(x)(x)24(x)1x24x1, 由函数f(x)是偶函数,则f(x)f(x)x24x1,,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(2)若方程mf(x)有4个根x1,x2,x3,x4,求m的取值范围及x1x2x3x4的值.,解 作出函数f(x)的图象如图所示, 由图可知, 当3m1时,方程mf(x)有4个根.,21,22,得x1x24,x3x44, 则x1x2x3x40.,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1
16、7,18,19,21.(12分)(2019荆州质检)为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产x万件,需另投入流动成本 为C(x)万元,且C(x) 每件产品售价为10元.经市场分析, 生产的产品当年能全部售完. (1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式; (注:年利润年销售收入固定成本流动成本),21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 因为每件产品售价为10元,则x万件产品销
17、售收入为10x万元, 依题意得,,21,22,当x8时,,(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?,当x6时,P(x)取得最大值P(6)13,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22.(12分)(2019佛山禅城区调研)已知f(x)是定义在(1,1)上的奇函数,当x(0,1)时,f(x) (1)求f(x)在(1,1)上的解析式;,21,22,因为f(x)是定义在(1,1)上的奇函数,所以f(0)0,,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,解 当x(1,0)时,x(0,1), 因为函数f(x)为奇函数,,21,22,20,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,(2)若g(x)是周期为2的函数,且x(1,1)时g(x)f(x),求x(2n,2n1),nN时函数g(x)的解析式.,21,22,解 设x(2n,2n1),则x2n(0,1) ,,所以2n也是周期, g(x2n)g(x),,