1 23 一次方程组是初中数学六年级下学期第 2 章第 4 节的内容 本讲主要讲解二 元一次方程的概念, 二元一次方程组和三元一次方程组的概念及其解法, 同学们 需要多多练习,做到能够灵活快速地解方程组 1、 二元一次方程二元一次方程 含有两个未知数的一次方程叫做二元一次方程二元一次方程 2、 二
著名机构六年级数学春季班 第13讲 恒等变形二Tag内容描述:
1、 1 / 23 一次方程组是初中数学六年级下学期第 2 章第 4 节的内容 本讲主要讲解二 元一次方程的概念, 二元一次方程组和三元一次方程组的概念及其解法, 同学们 需要多多练习,做到能够灵活快速地解方程组 1、 二元一次方程二元一次方程 含有两个未知数的一次方程叫做二元一次方程二元一次方程 2、 二元一次方程的解二元一次方程的解 使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程的解 3、 二元一次方程的解集二元一次方程的解集 二元一次方程的解有无数个,二元一次方程的解的全体叫做这个二元一次方程。
2、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,幂的运算法则(乘方运算): 1、 (n为正整数) 2、 (m,n都为正整数) 3、 (m,n都为正整数,且 , ) 4、 ( m,n都为正整数) 5、 (m为正整数) ( ) ( ,m为正整数) 平方差公式: ; 完全平方公式: ;,目录,上一页,空白页,知识要点,三元平方公式: 立方和公式: ; 立方差公式: ;,目录,上一页,空白页,知识要点,和的完全立方公。
3、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,知识点1:同底数幂的乘法法则 同底数幂相乘,底数不变,指数相加,即 (m、n为正整数) (1)此性质可以推广到三个或三个以上的同底数幂相乘,即 ,( 都为正整数) (2)此性质可逆用,即 (m、n为正整数) 知识点2:幂的乘方法则 幂的乘方,底数不变,指数相乘,即 ( m、n 为正整数) 此性质可逆用,即,目录,上一页,空白页,知识要点,知识。
4、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,一、整式 :代数式 代数式的定义:用基本的运算符号(加、减、乘、除、乘方等)把数或表示数的字母连结而成的式子叫做代数式单独的一个数或字母也是代数式 :单项式 单项式:像 ,这些代数式中,都是数字与字母的积,这样的代数式称为单项式也就是说单项式中不存在数字与字母或字母与字母的加、减的关系,且单项式的分母中不含字母单独的一。
5、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识回顾,方程ax=b的解要分类讨论 当a0时,方程的解是 当a=0且b=0时,方程的解是任意数 当a=0且b 0时,方程无解 所以含参数方程的解的情况:唯一解、无数解、无解等.,目录,上一页,空白页,【例1】,解关于x的方程: 1. 2.,目录,上一页,空白页,若关于x的方程 有无穷多个解,求a, B 的值,【例2】,目录,上一页,空白页,2. 若a、b为定值,关于x的一元一次方。
6、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,知识要点,代数式恒等变形的意义和代数式恒等变形中常用的特殊方法和 技巧。 把一个代数式通过各种运算或因式分解,变换成另一个与它恒 等的代数式,叫做代数式的恒等变形;代数式的运算是指代数式的 化简和求值。代数式的运算和恒等变形能力是学习数学的重要基本 功之一,恒等变形的作用在于改变原来问题的形式,做到化繁为 简,变难为易,使问题快捷。
7、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,例14,目录,上一页,空白页,【例1】,证明恒等式:,目录,上一页,空白页,证明:,【例2】,目录,上一页,空白页,【例3】,求证:,目录,上一页,空白页,【例4】,证明恒等式:,目录,上一页,空白页,【例5】,证明恒等式:,目录,上一页,空白页,【例6】,证明恒等式,目录,上一页,空白页,【例7】,证明:,目录,上一页,空白页,实数a与b满足 ,求 的值.,【例8】,目录,上一页,空白页,【例9】,已知 且。