解方程八年级

8.1二元一次方程组篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分某队在10场比赛中得到16分,那么这个队胜负分别是多少?你会用你学过的一元一次方程解决这个问题吗?解法一:设XX同学今年13岁,比老师年龄的小5岁.老师今年多少岁?设老师今年:同学的年龄可以表示为:同学的年龄:相等关

解方程八年级Tag内容描述:

1、1对3辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题第19讲 可化为一元一次方程的分式方程学习目标1了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径;2探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性;3能熟练解化为一元一次方程的分式方程,提高学生综合分析和解决实际问题能力教学内容【案例】小明和小丽比赛打字的速度,小丽每分钟比小明少打30个字,在相同的时间里,小丽打了2400个字,小明打了3000个字。请问:小丽和小明每分钟分别可打多少个字。

2、2020中考数学 方程专题之二元一次方程组(含答案)【例1】. 下列方程中,是二元一次方程的有哪些?;【答案】【例2】.(1) 是二元一次方程,则的值是_【答案】(2) 若方程是二元一次方程,则_ 【答案】(3) 已知方程是关于、的二元一次方程,求、的值 【答案】根据题意得,所以,【例3】. (1) 已知是方程的解,则 a 的值为( )A 1 - B. 1 C. 2 D. 3【答案】 A.(2)已知四组数值,其中哪些是二元一次方程的解()ABCD【答案】C(3)如果将满足方程的一对,值叫做方程的一组解,那么的解的组数是( )A1组B2组C无数组D没有解【答案】C【例4】.(1)。

3、2020中考数学 专题练习:一元一次方程与二元一次方程组(含答案)A级基础题1 “五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2 080元设该电器的成本价为x元,根据题意,下面所列方程正确的是()Ax(130%)80%2 080Bx30%80%2 080C2 08030%80%xDx30%2 08080%2二元一次方程组的解是()A. B.C. D.3为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍若设每副羽毛球拍为x元,每副乒乓。

4、中考总复习:一次方程及方程组-巩固练习【巩固练习】一、选择题1. 小明在解关于x、y的二元一次方程组 时得到了正确结果 后来发现“”“ ”处被墨水污损了,请你帮他找出、 处的值分别是( )A = 1, = 1 B = 2, = 1 C = 1, = 2 D = 2, = 22方程组的解是( ). A. B. C. D.3已知方程组的解为,则2a-3b的值为( ).A.4 B.-4 C.6 D.-6 4(2014春昆山市期末)方程x+2y=5的正整数解有()A一组 B二组 C三组 D四组5小明买书需用48元,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x张。

5、中考总复习:一次方程及方程组-知识讲解责编:常春芳【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式.2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相。

6、1.2直线的方程第1课时直线方程的点斜式学习目标1.了解由斜率公式推导直线方程的点斜式的过程.2.掌握直线的点斜式方程与斜截式方程.3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一直线方程的点斜式点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0斜率不存在的直线为xx0.知识点二直线方程的斜截式斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在1.直线的点斜式方。

7、1.2直线的方程第1课时直线方程的点斜式一、选择题1.已知直线的方程是y2x1,则()A.直线经过点(1,2),斜率为1B.直线经过点(2,1),斜率为1C.直线经过点(1,2),斜率为1D.直线经过点(2,1),斜率为1答案C解析由y2x1,得y2(x1),所以直线的斜率为1,过点(1,2).2.已知直线的斜率是2,且在y轴上的截距是3,则此直线的方程是()A.y2x3 B.y2x3C.y2x3 D.y2x3考点直线的斜截式方程题点写出直线的斜截式方程答案A3.直线3x2y60的斜率为k,在y轴上的截距为b,则有()A.k,b3 B.k,b2C.k,b3 D.k,b3答案C解析由3x2y60,得yx3,则k,b3.4.与直线yx的斜率。

8、目录,例1,例2,例3,例4,例5,例6,例7,例8,例12,例11,例9,例10,【练习1】,【练习2】,【练习3】,【练习4】,【练习5】,【练习6】,例13,【练习9】,【练习8】,【练习7】,目录,上一页,空白页,知识点复习,1. 分数:,可化为分数的数.,2. 绝对值的非负性:,3. 有理数加法:确定符号 绝对值相加减 (同加异减),有理数乘除:确定符号 绝对值相乘除 (奇负偶正),(奇负偶正),目录,上一页,空白页,【前铺1】,下列各式中,哪些是等式?哪些是代数式? 等式:_,目录,上一页,空白页,【例1】,(1)下列说法不正确的是:( ) A等式两边都加上一个数或一个式。

9、第 1 页 共 8 页 中考总复习:中考总复习:一次方程及方程组一次方程及方程组-知识讲解知识讲解 【考纲要求】【考纲要求】 1.了解等式、方程、一元一次方程的概念,会解一元一次方程; 2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组; 3.能根据具体问题中的数量关系列出方程(组) ,体会方程思想和转化思想. 【知识网络】【知识网络】 第 2 页 共 8 页 【考点梳理】【考点梳理】 考点考点一、一、一元一次方程一元一次方程 1.1.等式性质等式性质 (1)等式的两边都加上(或减去)同一个数(或式子) ,结果仍是。

10、第 1 页 共 5 页 中考总复习:中考总复习:一次方程及方程组一次方程及方程组-巩固练习巩固练习 【巩固练习巩固练习】 一、选择题一、选择题 1. 小明在解关于x、y的二元一次方程组 13 3, yx yx 时得到了正确结果 . 1 , y x 后来发现 “”“ ”处被墨水污损了,请你帮他找出、 处的值分别是( ) A = 1, = 1 B = 2, = 1 C = 1, = 2 D = 2, = 2 2方程组的解是( ). A. x1 y1 B. x1 y1 C. x2 y2 D. x2 y1 3已知方程组 axby4 axby2 的解为 x2 y1 ,则 2a-3b 的值为( ). A.4 B.-4 C.6 D.-6 4解二元一次方程组 得y( ) A 11 2 B 2 17。

11、小结与复习,第五章 一元一次方程,要点梳理,考点讲练,课堂小结,课后作业,要点梳理,一、认识一元一次方程,在一个方程中,只含有_,而且方程中的代数式都是整式,未知数的指数都是_,这样的方程叫做一元一次方程,一个未知数,1,1.一元一次方程的概念,2.方程的解的概念,的未知数的值,叫做方程的解,使方程左、右两边的值相等,3.等式的基本性质,同。

12、,导入新课,讲授新课,当堂练习,课堂小结,4 应用一元一次方程 打折销售,第五章 一元一次方程,1.准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系.(难点) 2.能利用一元一次方程解决简单的打折销售问题.(重点),清仓处理,跳楼价,5折酬宾,满200返100,导入新课,合作探究,1.进价100元的商品提价40%后,标价为_元,若按标价的。

13、,导入新课,讲授新课,当堂练习,课堂小结,6 应用一元一次方程 追赶小明,第五章 一元一次方程,1.学会利用线段图分析行程问题,寻找等量关系, 建立数学模型.(难点) 2.能利用行程中的速度、路程、时间之间的关系列 方程解应用题.(重点),模拟试验,小明和小华相距10米,他们同时出发,相向而行,小明每秒走3米,小华每秒走4米,他们能相遇吗?几秒钟可以相遇?,等量关系。

14、,导入新课,讲授新课,当堂练习,课堂小结,5 应用一元一次方程 “希望工程”义演,第五章 一元一次方程,1.借助表格准确分析问题中的数量关系,间接设未知数(重点) 2.正确找出等量关系,列出方程解决实际问题. (难点),导入新课,讲授新课,合作探究,某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹得票款69500元,成人票与学生票各售出多少张?,成人。

15、1 认识一元一次方程,第五章 一元一次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时 一元一次方程,1.理解一元一次方程的概念. 2.会根据具体问题中的等量关系列出一元一次方程.(重点、难点),老师的年龄乘以3再减去17刚好为73,那现在你能知道老师的年龄吗?你是怎么猜?,小游戏:猜老师的年龄,导入新课,讲授新课,合作探究,小敏,我能猜出你年龄.,小敏,不信,你的年龄乘2减5得数是多少?,你今年13岁,21,她怎么知道我的年龄是13岁的呢?,如果设小敏的年龄为x岁,那么“乘2再减5”就是 ,因此可以得到方程: .,2x5,2x5=21,情景1:,情景2:。

16、 DCBA列方程解应用题知识与技能学会列一元二次方程解有关面积、体积方面的应用问题;过程与方法 进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识教学目标 情感态度与价值观理解数学源于实践又服务于实践的观点教学重点:列一元二次方程解面积、体积方面应用题;教学难点:找等量关系教学方法:启发引导、讲练结合教学用具:练习册教学过程 师生活动 设计意图、设置问题情境合作探究 得出新知:复习引入:1、初一我们学习过列一元一次方程和列二元一次方程组解应用题,列方程解应用题的一般步骤是怎。

17、8.3 实际问题与二元一次方程组,引入新课,探究1,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,探究新知,探究1,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,从调查中你获得了什么信息?,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,你能估计出平均每只母牛和每只小牛一天各需饲料多少千克吗?,探究新知,探究1,养牛场原有30 只母牛和15。

18、实际问题与二元一次方程组,例:2只大牛和1只小牛,1天需用饲料45 kg;21只大牛和10只小牛,1天需用饲料470 kg. 问一只大牛一只小牛每天各吃多少饲料? 3只大牛4只小牛每天吃多少饲料?,相等关系: (1)2只大牛1天所需饲料1只小牛1天所需饲料45千克; (2)21只大牛1天所需饲料10只小牛1天所需饲料470千克,2x+y=45 21x+10y=470,养牛场原有30只大牛和15只小牛,1天约需用饲料675 kg;一周后又购进12只大牛和5只小牛,这时1天约需要饲料940 kg饲养员李大叔估计平均每只大牛1天约需要饲料1820 kg,每只小牛1天约需要78 kg你能否通过计算检验。

19、,XX同学今年13岁,比老师年龄的 小5岁.老师今年多少岁?,设老师今年: 同学的年龄可以表示为: 同学的年龄: 相等关系: 列方程:,( x-5)岁,13岁,同学年龄=同学年龄,x-5=13,这个方程叫什么方 程?,仔细观察,说说这个方程的特征?,x岁,篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?,设 胜的场数: 则胜场积分: 负的场数: 则负场积分: 相等关系1:相等关系2:列方程1:列方程2:,胜的场数+负的场数=总场数,胜场积分+负场积分=总积。

20、8.1二元一次方程组,篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分某队在10场比赛中得到16分,那么这个队胜负分别是多少?你会用你学过的一元一次方程解决这个问题吗?,解法一:设胜x场,负(10-x)场,则,解法二:设胜x场,负y场,则,考考你:,方程中有哪些条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?,x+y=10,2x+y=16,2x+(10-x)=16,含有两个未知数(x和y),并且未知数的次数都是1,这样的方程叫做二元一次方程.,观察: x+y=10 2x+y=16 在未知数的个数和次数与方程x+(10-x)=16有什么不一样?,。

【解方程八年级】相关PPT文档
【解方程八年级】相关DOC文档
标签 > 解方程八年级[编号:38765]