1、2017-2018学年江苏省盐城市七年级(下)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1(3分)四边形的内角和为()A180B360C540D7202(3分)下列图形中,可以由其中一个图形通过平移得到的是()ABCD3(3分)下列由左到右的变形中,因式分解正确的是()Ax21(x+1)(x1)B(x+1)2x2+2x+1Cx22x+1x(x2)+1D(x+1)(x1)x214(3分)满足不等式x+10的最小整数解是()A1B0C1D25(3分)已知x2+4x+k是一个完全平方式,则常数k为()A2B2C4D46(3分
2、)用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身、y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()ABCD7(3分)已知a()0,b22,c(2)2,则a、b、c的大小关系为()AcbaBabcCbacDbca8(3分)对于有理数x,我们规定x表示不小于x的最小整数,如2.23,22,2.52,若3,则x的取值可以是()A10B20C30D40二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程)9(3分)如图,直线a、b被直线c所截,ab,170,则2 10(3分)命题
3、“若ab,则ab”的逆命题是 11(3分)太阳的半径约为700000000米,数据700000000用科学记数法表示为 12(3分)计算:(b2)3b 13(3分)如图,ABC中,12,BAC60,则APB 14(3分)已知方程组,则a+b+c 15(3分)计算:(9)1009()2018 16(3分)(2+1)(22+1)(24+1)(28+1)(216+1)+1 三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤)17(6分)分解因式:(1)x23x;(2)2a
4、24a+218(6分)解方程组:19(6分)化简并求值:(n+2)(2n1)2n2,其中n20(6分)利用数轴确定不等式组的解集21(6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作:(1)将ABC先向右平移2个单位,再向上平移4个单位,画出平移后的A1B1C1;(2)连接AA1、BB1,则线段AA1、BB1的位置关系为 、数量关系为 ;(3)画出ABC的AB边上的中线CD以及BC边上的高AE22(6分)已知:如图,是一个形如“5”字的图形,ACDE,ABCD,D+E180求证:AE证明: (已知)A+C180( &nb
5、sp; )ACDE( ) D( )又D+E180(已知)AE( )23(8分)已知关于x、y的二元一次方程组(1)若方程组的解满足xy4,求m的值;(2)若方程组的解满足x+y0,求m的取值范围24(8分)一家公司加工蔬菜,有粗加工和精加工两种方式,如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜请问粗加工蔬菜和精加工蔬菜各多少吨?25(8分)小军、小华、小峰三人身上各有一些1元和5角的硬币小军:我有1元和5角的硬币共13枚,总币值为9元小华:我有1元和5角的硬币共1
6、3枚,总币值小于8.5元小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元这三人身上哪一个的5角硬币最多呢?请写出解答过程26(12分)三角形内角和定理告诉我们:三角形三个内角的和等于180如何证明这个定理呢?我们知道,平角是180,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理【定理证明】已知:ABC(如图)求证:A+B+C180【定理推论】如图,在ABC中,有A+B+ACB180,点D是BC延长线上一点,由平角的定义可得ACD+ACB180,所以ACD 从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和【初步运用】如
7、图,点D、E分别是ABC的边AB、AC延长线上一点(1)若A80,DBC150,则ACB ;(2)若A80,则DBC+ECB 【拓展延伸】如图,点D、E分别是四边形ABPC的边AB、AC延长线上一点(1)若A80,P150,则DBP+ECP ;(2)分别作DBP和ECP的平分线,交于点O,如图,若O50,则A和P的数量关系为 ;(3)分别作DBP和ECP的平分线BM、CN,如图,若AP,求证:BMCN2017-2018学年江苏省盐城市七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给
8、出的四个选项中,只有一项是符合题目要求的)1(3分)四边形的内角和为()A180B360C540D720【分析】根据多边形的内角和公式即可得出结果【解答】解:四边形的内角和(42)180360故选:B【点评】本题主要考查了多边形的内角和定理:n边形的内角和为(n2)1802(3分)下列图形中,可以由其中一个图形通过平移得到的是()ABCD【分析】根据平移的性质,结合图形对小题进行一一分析,选出正确答案【解答】解:只有C的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:C【点评】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键3(3分)下列由左到右的
9、变形中,因式分解正确的是()Ax21(x+1)(x1)B(x+1)2x2+2x+1Cx22x+1x(x2)+1D(x+1)(x1)x21【分析】直接利用因式分解的定义以及整式的乘法运算法则分别判断得出答案【解答】解:A、x21(x+1)(x1),由左到右的变形中,因式分解正确,符合题意;B、(x+1)2x2+2x+1,是整式乘法,不合题意;C、x22x+1x(x2)+1,不是因式分解,不合题意;D、(x+1)(x1)x21,是整式乘法,不合题意;故选:A【点评】此题主要考查了公式法分解因式以及整式的乘法运算,正确掌握相关定义是解题关键4(3分)满足不等式x+10的最小整数解是()A1B0C1D
10、2【分析】先移项得出不等式的解集,在此范围内确定不等式的最小整数解可得【解答】解:x+10,x1,则不等式的最小整数解为0,故选:B【点评】本题考查的是解一元一次不等式,在解答此类题目是要注意,不等式的两边同时除以一个负数时不等号的符号要改变,这是此类题目的易错点5(3分)已知x2+4x+k是一个完全平方式,则常数k为()A2B2C4D4【分析】根据完全平方公式即可求出答案【解答】解:(x+2)2x2+4x+4,k4,故选:C【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型6(3分)用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一
11、套罐头盒,现有18张白铁皮,设用x张制作盒身、y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()ABCD【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数2盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数18,再列出方程组即可【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:故选:B【点评】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”7(3分)已知a()0,b22,c(2)2,则a、b、c的大小关系为()AcbaBabcCbacDbca【分析】直接利用负指
12、数幂的性质以及零指数幂的性质分别化简得出答案【解答】解:a()01,b22,c(2)2,bca故选:D【点评】此题主要考查了负指数幂的性质以及零指数幂的性质,正确化简各数是解题关键8(3分)对于有理数x,我们规定x表示不小于x的最小整数,如2.23,22,2.52,若3,则x的取值可以是()A10B20C30D40【分析】由题意可知:规定x表示不小于x的最小整数,当3时,可以确定的取值范围,进而得到关于x的一元一次不等式组,解之即可【解答】解:有题意得:,解不等式得:x16,解不等式得:x26,不等式组的解集为16x26,20符合x的取值范围故选:B【点评】本题考查解一元一次不等式组,根据数量
13、关系,列出一元一次不等式组是解题的关键二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程)9(3分)如图,直线a、b被直线c所截,ab,170,则270【分析】由ab,根据两直线平行,同位角相等,即可求得3的度数,又由对顶角相等,即可求得2的度数【解答】解:ab,3170,2与3是对顶角,270故答案为:70【点评】此题考查了平行线的性质与对顶角的运用解题的关键是数形结合思想的应用10(3分)命题“若ab,则ab”的逆命题是若ab,则ab【分析】根据命题的逆命题进行解答即可【解答】解:命题“若ab,则ab”的逆命题是若ab,则ab,故答案为:若ab,则ab【点评】此题考查命题
14、问题,关键是根据命题的题设和结论进行颠倒得出逆命题即可解答11(3分)太阳的半径约为700000000米,数据700000000用科学记数法表示为7108【分析】科学记数法的表示形式为a10n的形式其中1|a|10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数【解答】解:7000000007108,故答案为:7108【点评】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12(3分)计算:(b2)
15、3bb5【分析】利用单项式除单项式法则计算即可得到结果【解答】解:(b2)3bb5,故答案为:b5【点评】此题考查了整式的除法,涉及的知识有:同底数幂的乘法,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键13(3分)如图,ABC中,12,BAC60,则APB120【分析】依据12,BACBAP+160,即可得出BAP+260,进而得到ABP中,P18060120【解答】解:12,BACBAP+160,BAP+260,ABP中,P18060120,故答案为:120【点评】本题主要考查了三角形内角和定理的运用,解题时注意:三角形内角和是18014(3分)已知方程组,则a+b+c2【分析】方程组
16、三方程相加即可求出所求【解答】解:,+得:2(a+b+c)4,则a+b+c2,故答案为:2【点评】此题考查了解三元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法15(3分)计算:(9)1009()20181【分析】直接利用幂的乘方运算法则以及积的乘方运算法则将原式变形得出答案【解答】解:(9)1009()2018(32)1009()201832018()2018(3)20181故答案为:1【点评】此题主要考查了幂的乘方运算以及积的乘方运算,正确将原式变形是解题关键16(3分)(2+1)(22+1)(24+1)(28+1)(216+1)+1232【分析】原式乘以(21)后,利
17、用平方差公式依次计算,合并即可得到结果【解答】解:原式(21)(2+1)(22+1)(24+1)(28+1)(216+1)+1(221)(22+1)(24+1)(28+1)(216+1)+1(241)(24+1)(28+1)(216+1)+1(281)(28+1)(216+1)+1(2161)(216+1)+12321+1232故答案为:232【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键三、解答题(本大题共有10小题,共72分.解答时应写出文字说明、推理过程或演算步骤)17(6分)分解因式:(1)x23x;(2)2a24a+2【分析】(1)原式提取公因式即可得到结果;(2)原式提取
18、2,再利用完全平方公式分解即可【解答】解:(1)原式x(x3);(2)原式2(a22a+1)2(a1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键18(6分)解方程组:【分析】直接利用代入消元法解方程得出答案【解答】解:,把代入得:2(1y)+3y5,解得:y3,把有代入得:x13,解得:x2,故方程组的解为【点评】此题主要考查了解二元一次方程组,正确掌握解方程组的方法是解题关键19(6分)化简并求值:(n+2)(2n1)2n2,其中n【分析】原式利用多项式乘以多项式法则计算,去括号合并得到最简结果,把n的值代入计算即可求出值【解答】解:原式2n2+3
19、n22n23n2,当n时,原式121【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键20(6分)利用数轴确定不等式组的解集【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集【解答】解:由得x2由得x1在数轴上表示不等式、的解集所以,不等式组的解集是2x1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”也考查了利用数轴表示不等式的解集21(6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作:
20、(1)将ABC先向右平移2个单位,再向上平移4个单位,画出平移后的A1B1C1;(2)连接AA1、BB1,则线段AA1、BB1的位置关系为AA1BB1、数量关系为AA1BB1;(3)画出ABC的AB边上的中线CD以及BC边上的高AE【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用平移的性质直接得出线段之间的关系;(3)利用基本作图方法得出CD,AE即可【解答】解:(1)如图:A1B1C1,即为所求;(2)线段AA1、BB1的位置关系为:AA1BB1、数量关系为:AA1BB1;故答案为:AA1BB1,AA1BB1;(3)如图所示:CD,AE即为所求【点评】此题主要考查了平移
21、变换以及平移的性质,正确得出对应点位置是解题关键22(6分)已知:如图,是一个形如“5”字的图形,ACDE,ABCD,D+E180求证:AE证明:ABCD(已知)A+C180(两直线平行,同旁内角互补)ACDE(已知)CD(两直线平行,内错角相等)又D+E180(已知)AE(等角的补角相等)【分析】依据ABCD可得A+C180,依据ACDE可得CD,再根据D+E180,即可得到AE【解答】解:ABCD(已知)A+C180(两直线平行,同旁内角互补)ACDE(已知)CD(两直线平行,内错角相等)又D+E180(已知)AE(等角的补角相等)故答案为:ABCD;两直线平行,同旁内角互补;已知;C;两
22、直线平行,内错角相等;等角的补角相等【点评】本题主要考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的23(8分)已知关于x、y的二元一次方程组(1)若方程组的解满足xy4,求m的值;(2)若方程组的解满足x+y0,求m的取值范围【分析】(1)用加减消元法解出x和y的值,把x和y用含有m的式子表示,代入xy4,求出m的值即可,(2)把x和y用含有m的式子表示,代入x+y0,得到关于m的一元一次不等式,解之即可【解答】解:(1),解得:,代入xy4得:m+24,解得:m2,故m的值为2,(2)把x2m2,ym4代入x+y0得:3m
23、60,解得:m2,故m的取值范围为:m2【点评】本题考查解二元一次方程组和解一元一次不等式,解题的关键:(1)正确找出等量关系列出关于m的一元一次方程,(2)根据不等量关系列出关于m的一元一次不等式24(8分)一家公司加工蔬菜,有粗加工和精加工两种方式,如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜请问粗加工蔬菜和精加工蔬菜各多少吨?【分析】设粗加工蔬菜为x吨,精加工蔬菜为y吨,根据14天要加工完成150吨蔬菜,即可得出关于x,y的二元一次方程组,解之即可得出结论【解答】解:设粗加工蔬菜为x吨,精加工蔬菜为y吨,根据题意
24、得:,解得:答:粗加工蔬菜为120吨,精加工蔬菜为30吨【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键25(8分)小军、小华、小峰三人身上各有一些1元和5角的硬币小军:我有1元和5角的硬币共13枚,总币值为9元小华:我有1元和5角的硬币共13枚,总币值小于8.5元小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元这三人身上哪一个的5角硬币最多呢?请写出解答过程【分析】设小军身上有1元硬币x枚,5角硬币y枚,根据13枚硬币共9元,即可得出关于x,y的二元一次方程组,解之可得出y的值;设小华身上有5角硬币m枚,则有1元硬币(13m)枚,根据总币值小于8
25、.5元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;设小峰身上有1元硬币a枚,5角硬币b枚,根据总币值4元,即可得出关于a,b的二元一次方程,结合a1可得出b6综上,即可得出结论【解答】解:设小军身上有1元硬币x枚,5角硬币y枚,根据题意得:,解得:,小军身上有5角硬币8枚;设小华身上有5角硬币m枚,则有1元硬币(13m)枚,根据题意得:13m+0.5m8.5,解得:m9,小华身上有5角硬币至少10枚;设小峰身上有1元硬币a枚,5角硬币b枚,根据题意得:a+0.5b4,b82a,又a1,b6,小峰身上最多有6枚5角硬币综上所述,小华身上5角硬币最多【点评】本题考查了二元一次方程组
26、的应用、一元一次不等式的应用以及二元一次方程的应用,通过解方程(方程组、不等式)求出三人身上5角硬币的枚数(或范围)是解题的关键26(12分)三角形内角和定理告诉我们:三角形三个内角的和等于180如何证明这个定理呢?我们知道,平角是180,要证明这个定理就是把三角形的三个内角转移到一个平角中去,请根据如下条件,证明定理【定理证明】已知:ABC(如图)求证:A+B+C180【定理推论】如图,在ABC中,有A+B+ACB180,点D是BC延长线上一点,由平角的定义可得ACD+ACB180,所以ACDA+ABC从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和【初步运用】如图,
27、点D、E分别是ABC的边AB、AC延长线上一点(1)若A80,DBC150,则ACB70;(2)若A80,则DBC+ECB260【拓展延伸】如图,点D、E分别是四边形ABPC的边AB、AC延长线上一点(1)若A80,P150,则DBP+ECP230;(2)分别作DBP和ECP的平分线,交于点O,如图,若O50,则A和P的数量关系为PA+100;(3)分别作DBP和ECP的平分线BM、CN,如图,若AP,求证:BMCN【分析】【定理证明】方法一:过点A作直线MNBC,根据平行线的性质和平角的定义可得结论;方法二:延长BC到点D,过点C作CEAB,根据平行线的性质和平角的定义可得结论;【定理推论】
28、根据三角形的内角和定理和平角的定义可得结论;【初步运用】(1)根据三角形的外角等于与它不相邻的两个内角的和列式可得结论;(2)根据三角形的内角和得:ABC+ACB100,由两个平角的和可得结论;【拓展延伸】(1)连接AP,根据三角形内角和定理的推论可得等式,将两个等式相加可得结论;(2)如图,设DBOx,OCEy,则DBOOBPx,PCOOCEy,由(1)同理得:x+yA+O,2x+2yA+P,综合可得结论;(3)如图,作辅助线,构建三角形PQC,根据(1)的结论得:DBP+ECPA+BPC,和角平分线的定义,证明MBPPQC,可得结论【解答】【定理证明】证明:方法一:过点A作直线MNBC,如
29、图所示,MABB,NACC,MAB+BAC+NAC180,BAC+B+C180;(3分)方法二:延长BC到点D,过点C作CEAB,如图所示,AACE,BECD,ACB+ACE+ECD180,A+B+ACB180;(3分)【定理推论】ACD+ACB180,A+B+ACB180,ACDA+ABC,(4分)故答案为:A+ABC;【初步运用】(1)DBCA+ACB,ACBDBCA1508070,故答案为:70;(5分)(2)A80,ABC+ACB100,DBC+ECB360100260,故答案为:260;(6分)【拓展延伸】(1)如图,连接AP,DBPBAP+APB,ECPCAP+APC,DBP+EC
30、PBAP+APB+CAP+APCBAC+BPC,BAC80,P150,DBP+ECPBAC+BPC80+150230,故答案为:230;(7分)(2)PA+100(9分)理由是:如图,设DBOx,OCEy,则DBOOBPx,PCOOCEy,由(1)同理得:x+yA+O,2x+2yA+P,2A+2OA+P,O50,PA+100,故答案为:PA+100;(3)证明:延长BP交CN于点Q,BM平分DBP,CN平分ECP,DBP2MBP,ECP2NCP,DBP+ECPA+BPC,ABPC,2MBP+2NCPA+BPC2BPC,BPCMBP+NCP,BPCPQC+NCP,MBPPQC,BMCN(12分)【点评】本题考查的是三角形内角和的证明、三角形外角的性质的推理及运用、平行线的性质,根据题意作出辅助线,构造出三角形是解答此题的关键