专题3.2 导数的计算-20届高中数学同步讲义(文)人教版(选修1-1)

上传人:hua****011 文档编号:90421 上传时间:2019-10-14 格式:DOC 页数:17 大小:1.49MB
下载 相关 举报
专题3.2 导数的计算-20届高中数学同步讲义(文)人教版(选修1-1)_第1页
第1页 / 共17页
专题3.2 导数的计算-20届高中数学同步讲义(文)人教版(选修1-1)_第2页
第2页 / 共17页
专题3.2 导数的计算-20届高中数学同步讲义(文)人教版(选修1-1)_第3页
第3页 / 共17页
专题3.2 导数的计算-20届高中数学同步讲义(文)人教版(选修1-1)_第4页
第4页 / 共17页
专题3.2 导数的计算-20届高中数学同步讲义(文)人教版(选修1-1)_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、1几个常用函数的导数几个常用函数的导数如下表:函数导数(为常数)2基本初等函数的导数公式(1)若,则;(2)若,则;(3)若,则;(4)若,则;(5)若,则;(6)若,则;(7)若,则;(8)若,则3导数运算法则(1);(2);(3)K知识参考答案:12K重点基本初等函数的导数公式、导数的四则运算法则K难点导数的四则运算法则K易错求导公式及求导法则记忆错误求函数的导数(1)基本初等函数的求导公式是求导的基本依据,一定要记清形式,学会使用公式求导(2)应用导数运算法则求函数的导数的技巧:求导之前,对三角恒等式先进行化简,然后再求导,这样既减少了计算量,又可少出错利用代数恒等变形可以避开对商的形式

2、求导学科&网在函数中有两个以上的因式相乘时,要注意多次使用积的求导法则,能展开的先展开成多项式,再求导(3)应用导数运算法则求函数的导数的原则:结合函数解析式的特点先进行恒等变形,把一个函数化成几个基本初等函数的加、减、乘、除的形式,再用运算法则求导下列求导运算正确的是ABCD【答案】B【解析】因为,所以A项应为;由知B项正确;由可知C项错误;D项中,所以D项是错误的综上所述,正确选项为B【名师点睛】要注意区分指数函数、对数函数的求导公式,以免在运用时混淆求下列函数的导数:(1);(2);(3)【答案】(1);(2);(3)【解析】(1)方法1:导数几何意义的应用利用导数的几何意义解题时需注意

3、:(1)切点既在原函数的图象上也在切线上,则切点坐标既适合原函数的解析式,也适合切线方程,常由此建立方程组求解;(2)在切点处的导数值等于切线的斜率过函数的图象上一点的切线方程是ABC或D或【答案】D【解析】由易知,所给点不一定是切点,设切点为,则切线方程为,已知点在切线上,所以将点的坐标代入切线方程,解得或当时,则过点的切线方程为;当时,则点是切点,切线的斜率为,学科&网则切线方程为,即综上,所求切线方程为或故选D【名师点睛】求切线方程时,首先应判断所给点是不是切点,如果不是,需将切点坐标设出已知曲线,直线,且直线l与曲线C相切于点,求直线l的方程及切点坐标【答案】直线l的方程为,切点坐标为

4、【名师点睛】求解时,注意根据题目条件舍去不合适的解,如本题需舍去因公式记忆不准确而致误求函数的导数【错解】【错因分析】,错解中因漏掉负号致误【正解】【名师点睛】应熟记基本初等函数的求导公式和导数的四则运算法则,以防因记忆不牢而致误1已知,则ABCD2曲线在点处的切线方程为ABCD3若曲线在点处的切线方程是,则ABCD4已知函数,其中为实数,为的导函数,若,则实数的值为ABCD5设函数的导函数为,且,则ABCD6已知为自然对数的底数,曲线在点处的切线与直线平行,则实数ABCD7已知函数,则ABCD8已知函数,其中a为实数,为的导函数,若,则a的值为_9已知函数的图象在点处的切线过点,则实数_10

5、若曲线在处的切线与直线垂直,则实数_11求下列各函数的导数:(1);(2)12已知抛物线,求过点且与抛物线相切的直线的方程13曲线在点处的切线与坐标轴所围成的三角形的面积为ABCD14若曲线在处的切线与直线平行,则实数的值为ABCD15函数在点处的切线的斜率的最小值为ABCD16已知点在曲线上,其中是自然对数的底数,曲线在点处的切线的倾斜角为,则点的纵坐标为ABCD17设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为ABCD18若直线与曲线相切于点,则实数的值为_19已知直线与曲线相切,则实数的值为_20已知函数的导函数为,且满足,则_21已知曲线在点处的切线与曲线相切,则_22已知函

6、数(1)求曲线在点处的切线的方程;(2)求满足斜率为的曲线的切线方程;(3)直线为曲线的切线,且经过原点,求直线的方程23(2018新课标全国文)设函数,若为奇函数,则曲线在点处的切线方程为ABCD24(2016四川文)设直线l1,l2分别是函数图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B,则PAB的面积的取值范围是ABCD25(2018天津文)已知函数,为f(x)的导函数,则的值为_26(2018新课标全国)曲线在点处的切线的斜率为,则_27(2018新课标全国文)曲线在点处的切线方程为_28(2017新课标全国I文)曲线在点(1,2)处的切线方

7、程为_29(2016新课标全国III文)已知为偶函数,当时,则曲线在点处的切线方程是_1【答案】D【解析】常函数的导数为,所以时,故选D2【答案】A【解析】,所以,切线方程为,故选A3【答案】A4【答案】B【解析】因为,所以,解得,故选B5【答案】D【解析】因为,所以,解得,故选D6【答案】B【解析】的导数为,可得曲线在点处的切线斜率为,由切线与直线平行,可得,解得故选B学%科网7【答案】C【解析】由题意得,令,则,解得,即,所以,故选C8【答案】3【解析】因为,所以9【答案】【解析】因为,所以,因为,所以,解得10【答案】【解析】由已知得,则,所以,解得11【答案】(1);(2)【解析】(1

8、)因为,所以(2)因为,所以学*科网12【答案】或13【答案】A【解析】因为,所以切线的斜率为,切线方程为,令得;令得,故围成的三角形的面积为,故选A14【答案】A【解析】因为,所以,又曲线在处的切线与直线平行,所以,故选A15【答案】A【解析】由题意得,所以在点处的切线的斜率为,因为,所以,当且仅当时取等号,所以在点处的切线斜率的最小值是,故选A16【答案】D17【答案】A【解析】由题意可知,所以,所以曲线在点处切线的斜率为故选A18【答案】3【解析】由题意得,所以 因为切点为,所以 , ,由解得,19【答案】【解析】设切点,则,又,所以,所以,所以,所以20【答案】【解析】,令,则,;令,

9、则,21【答案】8【解析】因为,所以,则曲线在点处的切线方程为,即又切线与曲线相切,当时,显然与平行,故,由,得,则,解得学科网22【答案】(1);(2)或;(3)23【答案】D【解析】因为函数是奇函数,所以,解得,所以,所以,所以曲线在点处的切线方程为,化简可得,故选D【名师点睛】本题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果24【答案】A25【答案】e【解析】由题可得,则即的值为e26【答案】【解析】,则,所以27【答案】【解析】由,得,则曲线在点处的切线的斜率为,则所求切线方程为,即【名师点睛】求曲线在某点处的切线方程的步骤:求出函数在该点处的导数值即为切线斜率;写出切线的点斜式方程;化简整理28【答案】【解析】设,则,所以,所以曲线在点处的切线方程为,即29【答案】【解析】当时,则又因为为偶函数,所以,所以,则,所以切线方程为,即学科&网

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 人教新课标A版 > 选修1-1