专题1.4 生活中的优化问题举例-20届高中数学同步讲义(理)人教版(选修2-2)

上传人:hua****011 文档编号:90312 上传时间:2019-10-14 格式:DOC 页数:19 大小:1.33MB
下载 相关 举报
专题1.4 生活中的优化问题举例-20届高中数学同步讲义(理)人教版(选修2-2)_第1页
第1页 / 共19页
专题1.4 生活中的优化问题举例-20届高中数学同步讲义(理)人教版(选修2-2)_第2页
第2页 / 共19页
专题1.4 生活中的优化问题举例-20届高中数学同步讲义(理)人教版(选修2-2)_第3页
第3页 / 共19页
专题1.4 生活中的优化问题举例-20届高中数学同步讲义(理)人教版(选修2-2)_第4页
第4页 / 共19页
专题1.4 生活中的优化问题举例-20届高中数学同步讲义(理)人教版(选修2-2)_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、1利用导数解决优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题_是求函数最值问题的有力工具解决优化问题的基本思路是:K知识参考答案:1导数K重点利用导数解决生活中的优化问题K难点利用导数解决利润最大、用料最省、效率最高等问题K易错求利润最大、用料最省、效率最高等问题时,易忽略实际意义最大值问题实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值如图所示,在边长为60cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长

2、方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【答案】箱子底边长为40cm时,容积最大,最大容积为16000cm3【解析】设箱子的底边长为xcm,则箱子高cm,箱子容积,得,令,解得(不合题意,舍去),当x在内变化时,的正负如下表:因此在处,函数取得极大值,并且这个极大值就是函数的最大值将代入,得最大容积为学科&网所以,箱子底边长为40cm时,容积最大,最大容积为16000cm3【名师点睛】(1)求几何体面积或体积的最值问题,关键是分析几何体的几何特征,根据题意选择适当的量建立面积或体积的函数,然后再用导数求最值;(2)注意根据实际意义对求出的解进行取舍某村庄拟修建一个无盖的圆

3、柱形蓄水池(不计厚度)设该蓄水池的底面半径为r米,高为h米,体积为V立方米假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000元(为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大【答案】(1),;(2)见解析(2)因为V(r)(300r4r3)(),所以令V(r)0,解得r15,r2(因为r2不在定义域内,舍去)当r(0,5)时,V(r)0,故V(r)在(0,5)上为增函数;当r(5,)时,V(r)0,故V(r)在(5,)上为减函数由

4、此可知,V(r)在r5处取得最大值,此时h8,即当r5,h8时,该蓄水池的体积最大最小值问题实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围一艘轮船在航行中的燃料费和它的速度的立方成正比已知速度为10海里/小时时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和最小?【答案】速度为20海里/小时时

5、,航行1海里所需的费用总和最小【名师点睛】本题是费用最少问题,若在定义域内只有一个极值点,且在极值点附近左减右增,则此时唯一的极小值就是最小值学科#网为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:厘米)满足关系:,若不建隔热层,每年能源消耗费用为8万元设为隔热层建造费用与20年的能源消耗费用之和(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值【答案】(1),;(2)隔热层5cm厚时,总费用最小为70万元(2),令,

6、解得或(舍去)当时,;当时,故是的最小值点,对应的最小值是故当隔热层修建5cm厚时,总费用达到最小值70万元1某箱子的容积与底面边长x的关系为,则当箱子的容积最大时,箱子的底面边长为A30B40C50D352已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为,则使该生产厂家获取最大年利润的年产量为A13万件B11万件C9万件D7万件3路灯距地平面8m,一个身高为1.6m的人以2m/s的速度在地平面上,从路灯在地平面上的射影点C开始沿某直线离开路灯,那么人影长度的变化速度v为Am/sBm/sCm/sDm/s4现有一段长为18m的铁丝,要把它围成一个底面一边长为另一边长2

7、倍的长方体形状的框架,当长方体体积最大时,底面的较短边长是A1mB1.5mC0.75mD0.5m5某公司规定:对于小于或等于150件的订购合同,每件售价为200元,对于多于150件的订购合同,每超过一件,则每件的售价比原来减少1元,则使公司的收益最大时应该订购的合同件数是A150B175C200D2256要做一个底面为长方形的带盖的箱子,其体积为72cm3,其底面两邻边长之比为12,则它的长为_ cm,宽为_ cm,高为_ cm时,可使表面积最小7某商品一件的成本为30元,在某段时间内以每件x元出售,可卖出(200x)件,要使利润最大,每件定价为_元8已知某厂生产件产品的成本为(元),问:(1

8、)要使平均成本最低,应生产多少件产品?(2)若产品以每件元售出,要使利润最大,应生产多少件产品?9请你设计一个包装盒,如图,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AEFBx(cm)(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值10为了美化城市,某市将一矩形花坛ABCD扩建成一个更大的矩

9、形花园AMPN,如图所示要求B在AM上,D在AN上,且对角线MN过C点,|AB|3米,|AD|2米(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?(2)若AN的长度不小于6米,则当AM、AN的长度分别是多少时,矩形AMPN的面积最小?并求最小面积11用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90,焊接成水箱,则水箱的最大容积为A120000cm3B128000cm3C150000cm3D158000cm312某产品的销售收入y1(万元)关于产量x(千台)的函数为y117x2(x0);生产成本y2(万元)关于产量x(千台)的函

10、数为y22x3x2(x0),为使利润最大,应生产A6千台B7千台C8千台D9千台13某工厂需要建一个面积为512m2的矩形堆料场,一边可以利用原有的墙壁,要使砌墙所用材料最省,堆料场的长和宽分别为A16m,16mB32m,16mC32m,8mD16m,8m14已知某厂生产(百件)某种商品的总成本为(万元),总收益为(万元),则生产这种商品所获利润的最大值为_万元,此时生产这种商品_百件15某商品每件成本5元,售价14元,每星期卖出75件如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低1元时,一星期多卖出5件(1)将一星期的商品

11、销售利润表示成的函数;(2)如何定价才能使一个星期的商品销售利润最大?16某地开发了一个旅游景点,第1年的游客约为100万人,第2年的游客约为120万人某数学兴趣小组综合各种因素预测:该景点每年的游客人数会逐年增加;该景点每年的游客都达不到130万人该兴趣小组想找一个函数来拟合该景点对外开放的第年与当年的游客人数(单位:万人)之间的关系(1)根据上述两点预测,请用数学语言描述函数所具有的性质;(2)若=,试确定,的值,并说明该函数是否符合上述两点预测;(3)若=,欲使得该函数符合上述两点预测,试确定的取值范围17(2015江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,

12、计划修建一条连接两条公路和山区边界的直线型公路记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和25千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy假设曲线C符合函数(其中a,b为常数)模型(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t请写出公路l长度的函数解析式,并写出其定义域;当t为何值时,公路l的长度最短?求出最短长度18(2018江苏)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成已知圆O的半径为40米,点

13、P到MN的距离为50米现规划在此农田上修建两个温室大棚,大棚内的地块形状为矩形ABCD,大棚内的地块形状为,要求均在线段上,均在圆弧上设OC与MN所成的角为(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚内种植甲种蔬菜,大棚内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为求当为何值时,能使甲、乙两种蔬菜的年总产值最大1【答案】B【解析】由题可得,令,解得,所以当时,箱子的容积有最大值故选B学%科网2【答案】C【解析】yx281,令y0,得x9或x9(舍去)当0x0;当x9时,y150时,R200(x150)x350xx2,R3502x,令R0,得x175,当时,当时,则当x1

14、75时,R有最大值,最大收益为350175175230625元,故选B6【答案】6 3 4【解析】设底面相邻两边长分别为x cm、2x cm,高为y cm学*科网则V2x2y72,y,S2(2x22xyxy)4x26xy4x2S8x,令S0,解得x3,则长为6cm,宽为3cm,高为4cm时,表面积最小7【答案】115【解析】依题意可得利润为L(x30)(200x)x2230x6000(0x200)L2x230,令L2x2300,解得因为在(0,200)内L只有一个极值,所以以每件115元出售时利润最大8【答案】(1)1000件;(2)6000件(2)设利润为元,则,所以,令,解得,可知当时取得

15、极大值且为最大值,因此要使利润最大,应生产6000件产品9【答案】(1);(2)当时取得最大值,包装盒的高与底面边长的比值为【解析】设包装盒的高为,底面边长为由已知得,(1),所以当时,取得最大值(2),由,得(舍去)或当时,;当时,所以当时,取得极大值,也是最大值此时,即包装盒的高与底面边长的比值为10【答案】(1)(单位:米);(2)|AN|6米,|AM|4.5米,最小面积为27平方米(2)令,则,当时,即函数在上单调递增,函数在上单调递增,当x6时,取得最小值,即取得最小值,为27(平方米)此时|AN|6米,|AM|4.5米故当AM,AN的长度分别是4.5米、6米时,矩形AMPN的面积最

16、小,最小面积是27平方米11【答案】B【解析】设水箱的高为xcm(0x60),则水箱底面边长为(1202x)cm,水箱的容积V(1202x)2x(1202480x4x2)x,V12x2960x120120,令V0,得x20或x60(舍去)当0x0;当20x60时,V0),y36x6x2,令y0,得0x6,令y6,当x6时,y取最大值,故为使利润最大,应生产6千台故选A13【答案】B【解析】如图所示,设场地垂直于墙的一边长为xm,则其邻边长为m因此新墙总长度,令L0,得x16或x16(舍去)可知当x16时,L取得最小值,当x16时,故当堆料场的宽为16m,长为32m时,可使砌墙所用的材料最省故选

17、B14【答案】66 915【答案】(1);(2)商品每件定价为9元时,可使一个星期的商品销售利润最大【解析】(1)依题意,设,由已知有,从而,(2)易得,学科网由得,由得或,可知函数在上递减,在递增,在上递减,从而函数取得最大值的可能位置为或,当时,答:商品每件定价为9元时,可使一个星期的商品销售利润最大16【答案】(1)见解析;(2)见解析;(3)(3)由,解得,要想符合预测,则有,即,从而或,当时,此时符合预测由,解得,即当时,所以此时不符合预测;当,此时符合预测,又由,知,所以,从而欲使也符合预测,则,即,又,解得综上所述,的取值范围是17【答案】(1),;(2),当时,公路的长度最短,

18、为千米(2)由(1)知,则点P的坐标为,设在点P处的切线交轴分别于点,则的方程为,由此得故设,则令,解得当时,是减函数;当时,是增函数从而,当时,函数取得极小值,也是最小值,所以,此时,故当时,公路的长度最短,为千米18【答案】(1)矩形ABCD的面积为800(4sincos+cos)平方米,CDP的面积为1600(cossincos),sin的取值范围是,1);(2)当=时,能使甲、乙两种蔬菜的年总产值最大【分析】(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法学科$网【解析】(1)连结PO并延长交MN于H,则PHMN,所以OH=10过O作OEBC于E,则OEMN,所以COE=,故OE=40cos,EC=40sin,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k0),则年总产值为4k800(4sincos+cos)+3k1600(cossincos)=8000k(sincos+cos),0,)设f()=sincos+cos,0,),则令,得=,当(0,)时,所以f()为增函数;当(,)时,所以f()为减函数,因此,当=时,f()取到最大值答:当=时,能使甲、乙两种蔬菜的年总产值最大

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 人教新课标A版 > 选修2-2