1、2018-2019学年重庆七十一中八年级(上)第一次月考数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑125的平方根是()A5B5CD2若x2x4()x16,则括号内应填x的代数式为()Ax10Bx8Cx4Dx23计算(a2)3的结果是()Aa5Ba5Ca6Da64下列计算正确的是()Ax2x3x6B(x2)3x5Cx2+x3x5Dx6x3x35有一个数值转换器,原理如图所示,当输入x的值为16时,输出的y的值为()A8BC2D36下列运算正确的是()AB4C6
2、D7下列根式中,与是同类二次根式的是()ABCD8计算|2|+|3|的结果是()A1B1C5D59若a2+2(3),b32,c|,则a,b,c的大小关系是()AabcBbacCacbDcab10若am2,an3,ap5,则a2m+np的值是()A2.4B2C1D011如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为()ABC2D12已知实数x,y,m满足,且y为负数,则m的取值范围是()Am6Bm6Cm6Dm6二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13实数2,0,中无理数有 14若有意义,则x的取值范围是 15比较
3、大小: 0.516若xn5,yn3,则(xy)2n 17规定:用符号x表示一个不大于实数x的最大整数,例如:3.693,+12,2.563,2按这个规定,1 18已知102,0.102,则x ,已知1.558,155.8,则y 三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19计算: +20四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上21解下列关于x的方程:(1)9(3x+2)216(2)(2x1)3422已知实数x,y
4、满足+|x+2y7|0,求xy的平方根23请根据如图所示的对话内容回答下列问题(1)求该魔方的棱长;(2)求该长方体纸盒的长24已知5+的小数部分是a,整数部分是m,5的小数部分是b,整数部分是n,求(a+b)2015mn的值五、解答题:(本大题2个小题,第1小题10分,第2小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上25(1)已知a+3与2a15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y+4,求的值26如果ax+b0,其中a,b为有理数,x为无理数,那么a0且b0(1)如果(a2)+b+30,其中a、b为有理数,试求a
5、,b的值;(2)如果(2+)a(1)b5,其中a、b为有理数,求a+2b的值2018-2019学年重庆七十一中八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑125的平方根是()A5B5CD【分析】根据开平方的意义,可得答案【解答】解;25的平方根是5,故选:B【点评】本题考查了平方根,一个正数有两个平方根,它们互为相反数2若x2x4()x16,则括号内应填x的代数式为()Ax10Bx8Cx4Dx2【分析】根据同底数幂的乘法
6、法则:同底数幂相乘,底数不变,指数相加,即可得出答案【解答】解:设括号里面的代数式为xa,则x2+4+ax16,即可得2+4+a16,解得:a10故选:A【点评】本题考查了同底数幂的乘法,属于基础题,解答本题的关键是掌握同底数幂的乘法法则3计算(a2)3的结果是()Aa5Ba5Ca6Da6【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进行计算即可【解答】解:(a2)3a23a6故选:D【点评】本题主要考查了积的乘方的性质,熟记运算性质是解题的关键4下列计算正确的是()Ax2x3x6B(x2)3x5Cx2+x3x5Dx6x3x3【分析】根据同底数幂的乘法、幂的乘方,合并同类项
7、,同底数幂的除法求出每个式子的值,再进行判断即可【解答】解:A、x2x3x5,故本选项错误;B、(x2)3x6,故本选项错误;C、x2和x3不是同类项,不能合并,故本选项错误;D、x6x3x3,故本选项正确;故选:D【点评】本题考查了同底数幂的乘法、幂的乘方,合并同类项,同底数幂的除法的应用,主要考查学生的计算能力和辨析能力5有一个数值转换器,原理如图所示,当输入x的值为16时,输出的y的值为()A8BC2D3【分析】先看懂数值转换器,若输入一个数,求出的这个数的算术平方根,若结果是有理数,再重新输入,若结果是无理数就输出据此作答即可【解答】解:当输入是16时,取算术平方根是4,4是有理数,再
8、把4输入,4的算术平方根是2,2是有理数,再把2输入,2取算术平方根是,是无理数,所以输出是故选:B【点评】本题考查了算术平方根,解题的关键值注意读懂数值转换器6下列运算正确的是()AB4C6D【分析】原式各项计算得到结果,即可做出判断【解答】解:A、原式|2|2,错误;B、原式43,错误;C、原式26,正确;D、原式3,错误,故选:C【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键7下列根式中,与是同类二次根式的是()ABCD【分析】先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断【解答】解:A、与不是同类二次根式,故本选项错误;B、3,与不是同类二次根式,
9、故本选项错误;C、与不是同类二次根式,故本选项错误;D、与是同类二次根式,故本选项正确故选:D【点评】本题考查了同类二次根式的定义,判断时首先要化为最简二次根式8计算|2|+|3|的结果是()A1B1C5D5【分析】直接利用绝对值的性质分别化简,进而得出答案【解答】解:原式2+31故选:A【点评】此题主要考查了实数运算,正确去绝对值是解题关键9若a2+2(3),b32,c|,则a,b,c的大小关系是()AabcBbacCacbDcab【分析】先求出a、b、c的值,再比较即可【解答】解:a2+2(3)8,b329,c|,cab,故选:D【点评】本题考查了有理数的混合运算和有理数的大小比较的应用,
10、能求a、b、c的值是解此题的关键10若am2,an3,ap5,则a2m+np的值是()A2.4B2C1D0【分析】根据同底数幂的乘法法则和除法法则求解【解答】解:a2m+np2.4故选:A【点评】本题考查了同底数幂的乘法和除法,解答本题的关键是掌握同底数幂的乘法法则和除法法则11如图,长方形内有两个相邻的正方形,面积分别为2和4,则阴影部分的面积为()ABC2D【分析】根据正方形的面积公式求得两个正方形的边长分别是,2,再根据阴影部分的面积等于矩形的面积减去两个正方形的面积进行计算【解答】解:矩形内有两个相邻的正方形面积分别为4和2,两个正方形的边长分别是,2,阴影部分的面积(2+)22422
11、故选:A【点评】本题考查了算术平方根,解决本题的关键是要能够由正方形的面积表示出正方形的边长,再进一步表示矩形的长12已知实数x,y,m满足,且y为负数,则m的取值范围是()Am6Bm6Cm6Dm6【分析】根据非负数的性质列出方程求出x、y的值,然后根据y是负数即可得到一个关于m的不等式,从而求得m的范围【解答】解:根据题意得:,解得:,则6m0,解得:m6故选:A【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13实数2,0,中无理数有,【分析】无理数的三种形式:开方开不尽
12、的数,无限不循环小数,含有的数据此可得答案【解答】解:实数2,0,中无理数有,故答案为:,【点评】本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键14若有意义,则x的取值范围是x【分析】根据二次根式的定义可知被开方数必须为非负数,列不等式求解【解答】解:要是有意义,则2x10,解得x故答案为:x【点评】本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义15比较大小:0.5【分析】首先把0.5变为,然后估算的整数部分,再根据比较实数大小的方法进行比较即可【解答】解:0.5,23,1,故填空答案:【点评】此题主要考查了实数的大小比较此题应把0
13、.5变形为分数,然后根据无理数的整数部分再来比较即可解决问题16若xn5,yn3,则(xy)2n225【分析】根据幂的乘方与积的乘方将式子进行合理变形,然后代入数据计算即可【解答】解:xn5,yn3,(xy)2n(xnyn)2,(53)2,152,225【点评】本题主要考查幂的乘方与积的乘方的性质,将式子进行合理变形是解答本题的关键17规定:用符号x表示一个不大于实数x的最大整数,例如:3.693,+12,2.563,2按这个规定,15【分析】先求出的范围,求出1的范围,即可得出答案【解答】解:,15故答案为:5【点评】本题考查了估算无理数的大小的应用,解此题的关键是求的范围18已知102,0
14、.102,则x0.010404,已知1.558,155.8,则y3780000【分析】当被开方数的小数点每移动2位,则开方的结果小数点向相同方向移动一位,因为0.102是102的小数点向左移动了3位,由此可以求出x;当被开方数的小数点每移动3位,则开方的结果小数点向相同方向移动一位,因为155.8是1.558的小数点向右移动了2位,由此求出y【解答】解:102,0.102,x0.010404,1.558,155.8,y3780000,故答案为:0.010404; 3780000【点评】本题主要考查了立方根、算术平方根中小数点的移动数位与被开方数之间的关系开平方时,被开方数的小数点每移动2位,则
15、开方的结果小数点移动一位三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上19计算: +【分析】先利用二次根式的乘法法则运算,然后化简后合并即可【解答】解:原式2+2+4【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍20【分析】将带分数化为分数,然后进行开平方及开立方的运算,最后进行有理数的混合运算即可【解答】解:原式60.5+9+7【点评】考查了实数
16、的运算,掌握开平方及有理数的混合运算法则是关键四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上21解下列关于x的方程:(1)9(3x+2)216(2)(2x1)34【分析】(1)根据平方根的定义即可求出答案(2)根据立方根的定义即可求出答案【解答】解:(1)9(3x+2)216,(3x+2)2,3x2,3x或3x,x或x;(2)(2x1)34(2x1)38,2x12,x【点评】本题考查立方根与平方根的定义,解题的关键是熟练运用立方根与平方根的定义,本题属于基础题型22已知实数x,y满足+|x+2y7|0,求x
17、y的平方根【分析】根据非负数的性质列出二元一次方程组,解方程组求出x、y,根据乘方法则,平方根的概念计算【解答】解:0,|x+2y7|,0, +|x+2y7|0,0,|x+2y7|0,则,解得,x3,y2,xy9,xy的平方根为3【点评】本题考查的是平方根的概念,非负数的性质,二元一次方程组的解法,掌握算术平方根和绝对值的非负性是解题的关键23请根据如图所示的对话内容回答下列问题(1)求该魔方的棱长;(2)求该长方体纸盒的长【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答;【解答】解:(1)设魔方的棱长为xcm,可得:x3216,解得:x6答:该魔方的棱长6cm(2)设该长方体纸
18、盒的长为ycm,6y2600,y2100,y10答:该长方体纸盒的长为10cm【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义24已知5+的小数部分是a,整数部分是m,5的小数部分是b,整数部分是n,求(a+b)2015mn的值【分析】先估算出的范围,再求出a、m、b、n的值,再代入求出即可【解答】解:23,m7,a5+72+,n2,b523,(a+b)2015mn(2+3)20157211413【点评】本题考查了求代数式的值和估算无理数的大小,能求出a、b、m、n的值是解此题的关键五、解答题:(本大题2个小题,第1小题10分,第2小题12分,共22分)解答时每小题必
19、须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上25(1)已知a+3与2a15是一个正数的平方根,求a的值;(2)已知x,y为实数,且y+4,求的值【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案【解答】解:(1)根据平方根的性质得,a+3+2a150,解得:a4,a+32a15,解得:a18,答:a的值为4或18;(2)满足二次根式与有意义,则,解得:x9,y4,+5【点评】此题主要考查了二次根式有意义的条件,正确得出x,y的值是解题关键26如果ax+b0,其中a,b为有理数,x为无理数,那么a0且b0(1)如果(a2)+b+30,其中a、b为有理数,试求a,b的值;(2)如果(2+)a(1)b5,其中a、b为有理数,求a+2b的值【分析】(1)根据题意确定出a与b的值即可;(2)根据题意确定出a与b的值,代入计算即可求出原式的值【解答】解:(1)由(a2)+b+30,得到a2,b3;(2)由(2+)a(1)b5整理得:(a+b)+(2ab5)0,a、b为有理数,解得:a,b,则a+2b【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键