1、数学试卷第 1 页(共 8 页)通州区 2019 年初三第一次模拟考试数学试卷2019 年 4 月考生须知1. 本试卷共 8 页,共三道大题,28 道小题,满分 100 分,考试时间 120 分钟2试题答案一律填涂或书写在答题卡上,在试卷上作答无效3在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答4考试结束,将本试卷和答题卡一并交回一、选择题(本题共 8 个小题,每小题 2 分,共 16 分)每题均有四个选项,符合题意的选项只有一个1 如图,AOB 的角平分线是( )A射线 OB B射线 OE C射线 OD D射线 OC2. 港珠澳大桥是中国第一例集桥、双人工岛、隧道
2、为一体的跨海通道. 其中海底隧道是由 33 个巨型沉管连接而成,沉管排水总量约 76000 吨. 将数 76000 用科学记数法表示为( )A B C D47.6103761050.76157.6103. 使二次根式 有意义的 x 的取值范围为( )2xA B C D 2x=2x4某几何体的平面展开图如图所示,则该几何体是( )A三棱锥 B三棱柱 C四棱锥 D四棱柱5. 如果 ,且 ,那么代数式 的值为( )3yxy2xyA B C D13136我国古代数学著作孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,
3、绳子剩余 4.5 尺,将绳子对折再量木条,木条剩余1 尺,问木条长多少尺?”设绳子长 x 尺,木条长 y 尺,则根据题意所列方程组正确的是( )A B C D4.512xy, 4.512y, 4.512x, 4.512xy,7. 2018 年我国科技实力进一步增强,嫦娥探月、北斗组网、航母海试、鲲龙击水、港珠澳大桥正式通车,这些成就的取得离不开国家对科技研发的大力投入.下图是 2014 年2018 年我国研究与试验发展(R&D)经费支出及其增长数学试卷第 2 页(共 8 页)速度情况. 2018 年我国研究与试验发展(R&D)经费支出为 19657 亿元,比上年增长 11.6%,其中基础研究经
4、费 1118亿元.根据统计图提供的信息,下列说法中合理的是( )A2014 年2018 年,我国研究与试验发展 (R&D)经费支出的增长速度始终在增加B2014 年2018 年,我国研究与试验发展 (R&D)经费支出增长速度最快的年份是 2017 年C2014 年2018 年,我国研究与试验发展 (R&D)经费支出增长最多的年份是 2017 年D2018 年,基础研究经费约占该年研究与试验发展 ( (R&D)经费支出的 10%8. 为了迅速算出学生的学期总评成绩,一位同学创造了一张奇妙的算图. 如图,y 轴上动点 M 的纵坐标 表示学生my的期中考试成绩,直线 上动点 N 的纵坐标 表示学生的
5、期末考试成绩,线段 MN 与直线 的交点为10xny 6xP,则点 P 的纵坐标 就是这名学生的学期总评成绩. 有下面几种说法:若某学生的期中考试成绩为 70 分,期Py末考试成绩为 80 分,则他的学期总评成绩为 75 分;甲同学的期中考试成绩比乙同学高 10 分,但期末考试成绩比乙同学低 10 分,那么甲的学期总评成绩比乙同学低;期中成绩占学期总评成绩的 60%. 结合这张算图进行判断,其中正确的说法是( )A. B. C. D. 二、填空题(本题共 8 个小题,每小题 2 分,共 16 分)9. 实数 a,b 在数轴上对应点的位置如图所示,若实数 c 满足 ,那么请你写出一个符合题意的实
6、数 c 的值:abca 432-4-3- 1-10%亿元 2014-2018 年我国研究与试验发展(R&D)经费支 出及其增长速度 x=6x=10yxPNM601098075403201 1098765432O1数学试卷第 3 页(共 8 页)c=_10. 如图,AB 是O 的直径,弦 于点 E,如果 ,则ACD 的度数是_ CDABACDDCEBOA11. 中国人民银行近期下发通知,决定自 2019 年 4 月 30 日停止兑换第四套人民币中菊花 1 角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_.12. 若多项式 可以写成 的形式,且 ,则 a 的值可以是_,b 的值可以是
7、_ 2xab2xm0b13. 小华同学的身高为 170 cm,测得他站立在阳光下的影长为 85 cm,紧接着他把手臂竖直举起,测得影长为 105 cm,那么小华举起的手臂超出头顶的长度为_ cm.14. 如图所示,在一条笔直公路 l 的两侧,分别有 A、B 两个小区,为了方便居民出行,现要在公路 l 上建一个公共自行车存放点,使存放点到 A、B 小区的距离之和最小,你认为存放点应该建在 处(填“C” “E”或“D ”) ,理由是 _15. 在一个不透明的袋中装有除颜色外其余均相同的 n 个小球,其中有 5 个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后再继
8、续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1000 5000 10000 50000 100000摸出黑球次数 46 487 2506 5008 24996 50007根据列表,估计出 n 的值最有可能的是 16甲、乙两运动员在长为 100m 的直道 AB(A,B 为直道两端点)上进行匀速往返跑训练,两人同时从 A 点起跑,到达 B 点后,立即转身跑向 A 点,到达 A 点后,又立即转身跑向 B 点,若甲跑步的速度为 5m/s,乙跑步的速度为 4m/s,则起跑后 100s 内,两人相遇的次数为 _.三、解答题(本题共 68 分,第 17-22 题
9、,每小题 5 分,第 23-26 题,每小题 6 分,第 27,28 题,每小题 7 分)解答应写出文字说明、演算步骤或证明过程17. 计算: 106tan3212lECDAB数学试卷第 4 页(共 8 页)18. 解不等式组: 3241.x,19已知:如图 1,在ABC 中,ACB 90.求作:射线 CG,使得 CGAB EDCCAB BA图 1 图 2下面是小东设计的尺规作图过程作法:如,2,以点 A 为圆心,适当长为半径作弧,分别交 AC,AB 于 D,E 两点;以点 C 为圆心,AD 长为半径作弧,交 AC 的延长线于点 F;以点 F 为圆心,DE 长为半径作弧,两弧在 FCB 内部交
10、于点 G;作射线 CG所以射线 CG 就是所求作的射线根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明证明:连接 FG、DE.ADE _,DAE = _CGAB (_) (填推理的依据) 20关于 x 的一元二次方程 有两个不相等的实数根210xn数学试卷第 5 页(共 8 页)(1)求 n 的取值范围;(2)若 n 为取值范围内的最小整数,求此方程的根21. 如图,在 ABC 中,ACB90,D 是 BC 边上的一点,分别过点 A、B 作 BD、AD 的平行线交于点 E,且 AB平分EAD.(1)求证:四边形 EADB 是菱形;(2)连接 EC
11、,当BAC60,BC = 时,求ECB 的面积2322如图,在平面直角坐标系 中,直线 与函数 的图象交于点 A(1,2).xOy2x0myx(1)求 的值;m(2)过点 作 轴的平行线 ,直线 与直线 l 交于点 B,与函数 的图象交于点 ,与 轴交Axl2yxb0yxCx于点 D. 当点 C 是线段 BD 的中点时,求 的值;当 时,直接写出 的取值范围.Bb23 如图,ABC 内接于 O ,AB 为O 的直径,过点 A 作O 的切线交 BC 的延长线于点 E,在弦 BC 上取一点F,使 AF=AE,连接 AF 并延长交O 于点 D(1)求证: ;BCAD(2)若 CE2, ,求 AD 的
12、长 30432-2 32-11AO1xyEDACBDFCOEAB数学试卷第 6 页(共 8 页)24. 数学活动课上,老师提出问题:如图 1,在 RtABC 中, ,BC =4 cm,AC =3 cm,点 D 是 AB 的中点,90C点 E 是 BC 上一个动点,连接 AE、DE . 问 CE 的长是多少时,AED 的周长等于 CE 长的 3 倍设 CE=x cm, AED 的周长为 y cm(当点 E 与点 B 重合时, y 的值为 10) 小牧根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究下面是小牧的探究过程,请补充完整:(1)通过取点、画图、测量,得到了 x
13、与 y 的几组值,如下表:x/cm 0 0.5 1 1.5 2 2.5 3 3.5 4y/cm 8.0 7.7 7.5 7.4 8.0 8.6 9.2 10(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出上表中对应值为坐标的点,画出该函数的图象,如图 2;(3)结合画出的函数图象,解决问题:当 CE 的长约为 cm 时,AED 的周长最小;当 CE 的长约为 cm 时,AED 的周长等于CE 的长的 3 倍.图 1 图 225. 某校团委举办了一次“中国梦,我的梦”演讲比赛,满分 10 分,学生得分均为整数,成绩达到 6 分及以上为合格,达到 9 分及以上为优秀这次竞赛中
14、甲、乙两组学生成绩分布的条形统计图如下DABCE y/cmx/cm31098765421 432O1数学试卷第 7 页(共 8 页)(1)补充完成下列的成绩统计分析表:组别 平均分 中位数 方差 合格率 优秀率甲 6.7 3.41 90% 20%乙 7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了 7 分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙” )(3)如果学校准备推荐其中一个组参加区级比赛,你推荐_参加,请你从两个不同的角度说明推荐理由26. 已知二次函数 在 和 时的函数值相等2yxab0x4(1)求二次函数 的对称轴;(2)过
15、P(0,1)作 轴的平行线与二次函数 的图象交于不同的两点 M、N.x2yxab当 时,求 的值;2MNb当 时,请结合函数图象,直接写出 的取值范围=4y432-2-32 x43211-O数学试卷第 8 页(共 8 页)27. 如图,在等边 中,点 是线段 上一点.作射线 ,点 关于射线 的对称点为 .连接 ABC DBCADBADEC并延长,交射线 于点 .F(1)设 ,用 表示 的度数;(2)用等式表示线段 、 、 之间的数量关系,并证明.E28. 在平面直角坐标系 中,已知点 A(0,2) ,B(2,2) ,点 M 为线段 AB 上一点. xOy(1)在点 , , 中,可以与点 关于直
16、线 对称的点是_;2,1C,0D1,Eyx(2)若 轴上存在点 ,使得点 与点 关于直线 对称,求 的取值范围.xNMb(3)过点 作直线 ,若直线 上存在点 , 使得点 与点 关于直线 对称(点 M 可以与点 N 重合) ,.lyxNl请你直接写出点 横坐标 的取值范围.nFECBDyxA-3-23-3-2 32-11- B2O1数学试卷第 9 页(共 8 页)通州区 2019 年初三第一次模拟考试数学试卷参考答案及评分标准一、选择题(本题共 8 个小题,每小题 2 分,共 16 分)题号 1 2 3 4 5 6 7 8答案 B A B C A B B C二、填空题(本题共 8 个小题,每小
17、题 2 分,共 16 分)9. 答案不唯一,如 10. 11. 12. 答案不唯一,如 , 1604413. 14. E,两点之间线段最短 15. 16. 40 10三、解答题(本题共 68 分,第 17-22 题,每小题 5 分,第 23-26 题,每小题 6 分,第 27,28 题,每小题 7 分) 17. 解:原式= 4 分 32612= = . 5 分 118. 解:解不等式, , 1 分 342x, . 2 分 解不等式, , 3 分 23x. 4 分 5不等式组的解集为 . 5 分 5x19 (1)使用直尺和圆规,补全图形;(保留作图痕迹) GFEDCBA 2 分 (2)完成下面的
18、证明证明:连接 FG、DE.ADE CFG, 3 分 DAE = FCG 4 分 CGAB (同位角相等,两直线平行) (填推理的依据) 5 分 20.解:(1)一元二次方程 有两个不相等的实数根, 210xn数学试卷第 10 页(共 8 页) = , 1 分 2410n即 , . 2 分 0(2) n 为取值范围内的最小整数, . 3 分 1 2x 0 , . 5 分 1x221.(1)证明: , , ADBE四边形 EADB 是平行四边形. 1 分 AB 平分EAD, . , AEB .D . .四边形 EADB 是菱形. 2 分 (2)解:ACB90,BAC 60,BC= , 23 .t
19、an603BCA . 3 分2 . 4 分123CBSA ,E . 5 分 3CBAA22. 解:(1)把 A(1,2)代入函数 中,(0)myx .m . 1 分 2(2)过点 C 作 轴的垂线,交直线 l 于点 E,交 轴于点 F.xx当点 C 是线段 BD 的中点时,.1EF点 C 的纵坐标为 1. 2 分 把 代入函数 中,y2yxEDACBFl EDBC432-2 32-1AO1xy数学试卷第 11 页(共 8 页)得 .2x点 C 的坐标为(2,1). 3 分把 C(2,1)代入函数 中,2yxb得 . 4 分 3b . 5 分23 (1)证明:AE 是O 的切线,AB 为O 的直
20、径, , . 1 分90BAE90CB . . . 2 分AF=AE, , . D . 3 分BCA(2)解:连接 CD. , . 4 分 .AD ,CE2, ,90CE 30CAEFBtan .tan = .3A . 5 分2C过点 C 作 CG AD 于点 G.cos .FAcos = .302 . GACCD, ,9CB . 6 分6AD另解一:连接 BD. 先求 AB 的长,再求 AD.另解二:连接 CD. 先求 AE 的长,再证 FC=FD.24. (1)补全表格: 7.6 . 1 分(2)描点,画图象. 3 分(3)结合画出的函数图象,解决问题:1.5; 4 分画出直线 , 5 分
21、3yxGDFCOEAB31098765421 432O1 xy数学试卷第 12 页(共 8 页)2.6-2.9(在范围内即可) 6 分25. (1)组别 平均分 中位数 方差 合格率 优秀率甲 6.7 6 3.41 90% 20%乙 7.1 7.5 1.69 80% 10% 2 分(2)甲 3 分(3)甲或乙 4 分甲组:甲组的合格率、优秀率均高于乙组.(乙组的平均分、中位数均高于甲组,且乙组的成绩比甲组的成绩稳定 ) 6 分26. 解:(1)二次函数 在 和 时的函数值相等2yxab0x4对称轴为直线 . 1 分(2) 不妨设点 M 在点 N 的左侧.对称轴为直线 , ,2x点 M 的坐标为
22、(1,1) ,点 N 的坐标为(3,1). 2 分 , .axab , . 4 分4b . 6 分1527. 解:(1)连接 AE. 点 关于射线 的对称点为 ,BADEAE=AB, . F 是等边三角形, C , . 60CB , . 1 分602EAAE .18 . 2 分60BCF另解:借助圆.(2) AE证明:如图,作 交 AD 于点 G,连接 BF. 3 分G , ,BFADBCF .60CFCG 是等边三角形.FECABD数学试卷第 13 页(共 8 页)GF = FC. 4 分 是等边三角形, ABC , . 60 .GF在ACG 和BCF 中,ABC, ,ACGBCF. . 5 分AGBF点 关于射线 的对称点为 ,DE . 6 分E . . 7 分AFC另一种证法:作 交 FC 的延长线于点 H,连接 BF.60H28. (1)解: , , 2 分2,1,D(2)由题意可知,点 B 在直线 上.yx直线 与直线 平行.yxb过点 A 作直线 的垂线交 x 轴于点 G,点 G 是点 A 关于直线 的对称点. 3 分y .2,0过点 B 作直线 的垂线交 x 轴于点 H.OBH 是等腰直角三角形.点 G 是 OH 的中点.直线 过点 G. 4 分yxb .2 的取值范围是 . 5 分0- (3) 或 . 7 分n 2 GFECABD