江西省九江市柴桑2018-2019学年北师大八年级上第一次月考数学试卷(含答案解析)

上传人:可** 文档编号:48479 上传时间:2019-02-28 格式:DOC 页数:13 大小:264KB
下载 相关 举报
江西省九江市柴桑2018-2019学年北师大八年级上第一次月考数学试卷(含答案解析)_第1页
第1页 / 共13页
江西省九江市柴桑2018-2019学年北师大八年级上第一次月考数学试卷(含答案解析)_第2页
第2页 / 共13页
江西省九江市柴桑2018-2019学年北师大八年级上第一次月考数学试卷(含答案解析)_第3页
第3页 / 共13页
江西省九江市柴桑2018-2019学年北师大八年级上第一次月考数学试卷(含答案解析)_第4页
第4页 / 共13页
江西省九江市柴桑2018-2019学年北师大八年级上第一次月考数学试卷(含答案解析)_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、2018-2019 学年江西省九江市柴桑八年级(上)第一次月考数学试卷一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是最符合题目要求的)1一个直角三角形的两条边分别是 6 和 8,则第三边是( )A10 B12 C12 或 D10 或2等腰三角形的腰长为 10,底长为 12,则其底边上的高为( )A13 B8 C25 D643三角形的三边长为 a,b,c,且满足(b+c) 2a 2+2bc,则这个三角形是( )A等边三角形 B钝角三角形 C直角三角形 D锐角三角形4下列说法不正确的是( )A1 的平方根是1 B1 的立方根是1C4 是 2 的

2、平方根 D3 是 9 的平方根5下列各式中无意义的是( )A B C D6在下列各数中,是无理数的是( )A B C3.1415926 D7我们知道 是一个无理数,那么 的大小在哪两个数之间( )A3 和 4 B4 和 5 C19 和 20 D20 和 218若 a ,b| |,c ,则 a、b、c 的大小关系是( )Aabc Bbac Cbca Dc ba9如图,ABCD 于 B,ABD 和BCE 都是等腰直角三角形,如果 CD17,BE5,那么 AC的长为( )A12 B7 C5 D1310三角形三边之比分别为(1) (2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形

3、的有( )A1 个 B2 个 C3 个 D4 个二、填空题(本大题共 5 小题,每小题 3 分,共 15 分,把答案填在题中横线上)11如图为某楼梯,测得楼梯的长为 5 米,高 3 米,计划在楼梯表面铺地毯,地毯的长度至少需要 米12在 RtABC 中,斜边 AB4,则 AB2+AC2+BC2 13如图,数轴上点 A 所表示的实数是 14已知 a,b 分别是 的整数部分和小数部分,则 2ab 的值为 15如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形 A,B,C,D 的面积之和为 cm 2三、解答题(本大题共 6 小题,共 55 分,解答应写

4、出文字说明,证明过程或演算步骤)16把下列各式化为最简二次根式;(1)(2)(3)(4)17(8 分)解下列方程;(1)4x 225;(2)(x0.5) 30.02718(7 分)如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;使三角形的三边长分别为 1,3, (在图中画出一个即可);使三角形为钝角三角形且面积为 3(在图 中画出一个即可),并计算你所画三角形的三边的长19(8 分)已知 ,求 7(x+y) 20 的立方根20(10 分)如图,在四边形 ABCD 中,BCDC 2,AD3,AB1,且C90,求B 的度数21(10 分)

5、如图,长方形纸片 ABCD 沿对角线 AC 折叠,设点 D 落在 D处,BC 交 AD于点E,AB6cm ,BC8cm,求阴影部分的面积2018-2019 学年江西省九江市柴桑三中八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,在每小题给出的四个选项中,只有一项是最符合题目要求的)1一个直角三角形的两条边分别是 6 和 8,则第三边是( )A10 B12 C12 或 D10 或【分析】设第三条边为 x,再根据 8 为直角边与斜边两种情况求解即可【解答】解:设第三条边为 x,当 8 为直角边时,x 10;当 8 为斜边时,x 综上所

6、述,第三条边的长度是 10 或 2 故选:D【点评】本题考查的是勾股定理,在解答此题时要进行分类讨论,不要漏解2等腰三角形的腰长为 10,底长为 12,则其底边上的高为( )A13 B8 C25 D64【分析】先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度【解答】解:作底边上的高并设此高的长度为 x,根据勾股定理得:6 2+x210 2,解得:x8故选:B【点评】本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线然后根据勾股定理即可求出底边上高的长度3三角形的三边长为 a,b,c,且满足(b+c) 2a 2+2bc,则这个三角形是( )A等

7、边三角形 B钝角三角形 C直角三角形 D锐角三角形【分析】展开等式后,利用勾股定理的逆定理解答即可【解答】解:因为三角形的三边长满足(b+c) 2a 2+2bc,可得:b 2+c2a 2,所以这个三角形是直角三角形,故选:C【点评】此题考查了勾股定理的逆定理的应用,熟练掌握因式分解的方法是解本题的关键4下列说法不正确的是( )A1 的平方根是1 B1 的立方根是1C4 是 2 的平方根 D3 是 9 的平方根【分析】直接利用平方根以及立方根的定义计算得出答案【解答】解:A、1 的平方根是1,正确,不合题意;B、1 的立方根是1,正确,不合题意;C、4 是 16 的一个平方根,故此选项错误,符合

8、题意;D、3 是 9 的平方根,正确,不合题意;故选:C【点评】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键5下列各式中无意义的是( )A B C D【分析】直接利用二次根式的定义分析得出答案【解答】解:A、 ,有意义;B、 ,有意义;C、 ,有意义;D、 ,无意义故选:D【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键6在下列各数中,是无理数的是( )A B C3.1415926 D【分析】根据无理数的三种形式解答即可【解答】解:A 是无理数;B 2,是整数,属于有理数;C3.1415926 是有限小数,属于有理数;D 2,是整数,属于有理数;故选:A【点评】本题考查

9、了无理数的知识,解答本题的关键是掌握无理数的三种形式:开方开不尽的数, 无限不循环小数, 含有 的数7我们知道 是一个无理数,那么 的大小在哪两个数之间( )A3 和 4 B4 和 5 C19 和 20 D20 和 21【分析】直接得出 的取值范围进而得出答案【解答】解:4 5,3 4故选:A【点评】此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键8若 a ,b| |,c ,则 a、b、c 的大小关系是( )Aabc Bbac Cbca Dc ba【分析】根据实数大小的比较方法比较即可【解答】解:a ,b| | ,c 2, 2,bac,故选:B【点评】本题考查了实数大小的比较,熟

10、记比较的方法是解题的关键9如图,ABCD 于 B,ABD 和BCE 都是等腰直角三角形,如果 CD17,BE5,那么 AC的长为( )A12 B7 C5 D13【分析】先根据BCE 等腰直角三角形得出 BC 的长,进而可得出 BD 的长,根据ABD 是等腰直角三角形可知 ABBD ,在 RtABC 中利用勾股定理即可求出 AC 的长【解答】解:BCE 等腰直角三角形,BE5,BC5,CD17,DBCDBE17512 ,ABD 是等腰直角三角形,ABBD 12,在 Rt ABC 中,AB12,BC 5,AC 13故选:D【点评】本题考查的是等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的

11、性质是解答此题的关键10三角形三边之比分别为(1) (2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形的有( )A1 个 B2 个 C3 个 D4 个【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可【解答】解:设每份为 k,则(1)( k) 2+(2k) 2( k) 2;(2)(3k) 2+(4k ) 2(5k ) 2;(3)k 2+(2k) 2(3k ) 2;(4)(4k) 2+(5k ) 2(6k ) 2,可以构成直角三角形的是 1 个故选:A【点评】本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的

12、逆定理加以判断即可二、填空题(本大题共 5 小题,每小题 3 分,共 15 分,把答案填在题中横线上)11如图为某楼梯,测得楼梯的长为 5 米,高 3 米,计划在楼梯表面铺地毯,地毯的长度至少需要 7 米【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可【解答】解:由勾股定理得:楼梯的水平宽度 4,地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是 3+47 米故答案为 7【点评】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性12在 RtABC 中,斜边 AB4,则 AB2+A

13、C2+BC2 32 【分析】根据勾股定理即可求得该代数式的值【解答】解:在 RtABC 中,斜边 AB4,AB 2BC 2+AC216,AB 216,AB 2+BC2+AC232故答案为:32【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方13如图,数轴上点 A 所表示的实数是 【分析】根据勾股定理,可得斜线的长,根据圆的性质,可得答案【解答】解:由勾股定理,得斜线的为 ,由圆的性质,得:点表示的数为 ,故答案为: 【点评】本题考查了实数与数轴,利用勾股定理得出斜线的长是解题关键14已知 a,b 分别是 的整数部分和小数部分,则 2ab 的值为 9

14、【分析】先股算术 的大致范围,然后再求得 a、b 的值,最后代入计算即可【解答】解:91316,3 4a3,b 32ab23( 3)6 +39 【点评】本题主要考查的是估算无理数的大小,求得 a、b 的值是解题的关键15如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形 A,B,C,D 的面积之和为 49 cm 2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形 A,B,C,D 的面积之和49cm 2故答案为:49cm 2【点评】

15、熟练运用勾股定理进行面积的转换三、解答题(本大题共 6 小题,共 55 分,解答应写出文字说明,证明过程或演算步骤)16把下列各式化为最简二次根式;(1)(2)(3)(4)【分析】(1)利用二次根式的性质化简;(2)根据二次根式的除法法则运算;(3)利用平方差公式计算;(4)先把各二次根式化简为最简二次根式,然后合并即可【解答】解:(1)原式10106 ;(2)原式4 +54 +10;(3)原式231;(4)原式2 +35 【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性

16、质,选择恰当的解题途径,往往能事半功倍17(8 分)解下列方程;(1)4x 225;(2)(x0.5) 30.027【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案【解答】解:(1)4x 225故 x2 ,解得:x ;(2)(x0.5) 30.027故 x0.50.3则 x0.8【点评】此题主要考查了立方根和平方根,正确掌握相关定义是解题关键18(7 分)如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;使三角形的三边长分别为 1,3, (在图中画出一个即可);使三角形为钝角三角形且面积为 3(在图

17、 中画出一个即可),并计算你所画三角形的三边的长【分析】(1)三角形的三边长分别为 1,3, ,恰好为勾股数,利用网格直接作出即可,(2)利用三角形的面积为 3,固定底为整数,高为整数,例如 23 等,即可画出;再利用勾股定理求得三角形的三边的长【解答】解:如图,ABC 即为所求如图, ABC 即为所求ABC 的三边的长分别为:AB2,AC 5,BC 【点评】此题主要考查勾股定理及三角形的面积19(8 分)已知 ,求 7(x+y) 20 的立方根【分析】根据被开方数大于等于 0,分母不等于 0 列式求出 x 的取值范围,再根据非负数的性质列式求出 x、y 的值,然后代入代数式进行计算,再根据立

18、方根的定义解答【解答】解:由题意得,5x0,解得 x5,y2x0,x 2 250,解得 x5,y 10,7(x+y)20 7(510)20125,(5) 3125,7(x+y)20 的立方根是5【点评】本题考查了非负数的性质:几个非负数的和为 0 时,这几个非负数都为 020(10 分)如图,在四边形 ABCD 中,BCDC 2,AD3,AB1,且C90,求B 的度数【分析】连接 BD,根据勾股定理的逆定理得出 ABD 为直角三角形,进而解答即可【解答】解:连接 BD,在 Rt BCD 中, BD2BC 2+DC28BCDC,BDCDBC45在ABD 中,AB 2+BD28+1 293 2AD

19、 2,ABD 为直角三角形,故ABD90,BABD +DBC90+45135【点评】本题考查的是勾股定理、勾股定理的逆定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键21(10 分)如图,长方形纸片 ABCD 沿对角线 AC 折叠,设点 D 落在 D处,BC 交 AD于点E,AB6cm ,BC8cm,求阴影部分的面积【分析】先根据翻折变换的性质得出EACDAC,再由平行线的性质得出DACACB,故可得出 AECE ,设 CE x,则 BE8x,在 RtABE 中根据勾股定理可求出 x 的值,进而得出结论【解答】解:ADC 由ADC 翻折而成,EACDAC,ADBC,DACACB,EACACB,AECE,设 CEx,则 BE8x,在 Rt ABE 中,AE 2AB 2+BE2,即 x26 2+(8x) 2,解得 x ,S 阴影 CEAB 6 【点评】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 月考试卷 > 八年级上