人教版七年级数学下册《第七章平面直角坐标系》单元练习题(含答案)

上传人:好样****8 文档编号:45566 上传时间:2019-02-09 格式:DOC 页数:8 大小:92KB
下载 相关 举报
人教版七年级数学下册《第七章平面直角坐标系》单元练习题(含答案)_第1页
第1页 / 共8页
人教版七年级数学下册《第七章平面直角坐标系》单元练习题(含答案)_第2页
第2页 / 共8页
人教版七年级数学下册《第七章平面直角坐标系》单元练习题(含答案)_第3页
第3页 / 共8页
人教版七年级数学下册《第七章平面直角坐标系》单元练习题(含答案)_第4页
第4页 / 共8页
人教版七年级数学下册《第七章平面直角坐标系》单元练习题(含答案)_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、第七章 平面直角坐标系单元练习题一、选择题 1.如图,一方队正沿箭头所指的方向前进, A的位置为三列三行,表示为(3,3),(5,4) 表示的位置是( )A AB BC CD D2.已知点 M到 x轴的距离为3,到 y轴的距离为2,则 M点的坐标为( )A (3,2)B (3,2)C (3,2)D (2,3),(2 ,3),(2,3),( 2,3)3.象棋在中国有着三千多年的历史,是趣味性很强的益智游戏如图,是一局象棋残局,已知表示棋子“马”和“车 ”的点的坐标分别为(2,1) 和(3,1),那么表示棋子“ 将”的点的坐标为( )A (1,2)B (1,0)C (0,1)D (2,2)4.在平

2、面直角坐标系中,点(1, m21) 一定在( )A 第一象限B 第二象限C 第三象限D 第四象限5.下列四点与点(2,6)的连接线段中,与 x轴和 y轴都不相交的是( )A (4,2)B (3,1)C (4,2)D (3,1)6.如图,在平面直角坐标系中,点 P的坐标为( )A (3,2)B (2,3)C (3,2)D (2,3)7.如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是( )A (0,4)(0,0)(4,0)B (0,4)(4,4)(4,0)C (0,4)(3,4)(4,2)(4,0)D (0,4)(1,4)(1,1)(4,1

3、)(4,0)8.从车站向东走400 m,再向北走500 m到小红家;从车站向北走500 m,再向西走200 m到小强家,若以车站为原点,以正东、正北方向为正方向建立平面直角坐标系,则小红家、小强家的坐标分别为( )A (400,500), (500,200)B (400,500) ,(200,500)C (400,500) ,( 200,500)D (500,400), (500,200)二、填空题 9.已知点 A(4,3),点 B(x, 3),若 ABx轴,且线段 AB的长为5, x_.10.已知点 P的坐标为(3 a6,2 a),且点 P到两坐标轴的距离相等,则点 P的坐标是_11.点 P

4、到 x轴的距离是2,到 y轴的距离是3,且在 y轴的左侧,则 P点的坐标是_12.A、 B两点的坐标分别为(1,0)、(0,2) ,若将线段 AB平移至 A1B1,点 A1、 B1的坐标分别为(2 , a),( b,3),则 a b_.13.已知点 A(4,3), ABy轴,且 AB3,则 B点的坐标为_14.已知线段 MN平行于 y轴,且 MN的长度为3,若 M(2, 2),那么点 N的坐标是_15.五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜如图,

5、这一部分棋盘是两个五子棋爱好者的对弈图观察棋盘,以点 O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子 A的坐标为(7,5),则白子 B的坐标为_;为了不让白方获胜,此时黑方应该下在坐标为_的位置处16.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲) 的坐标为(2,2),黑棋( 乙)的坐标为(1,2),则白棋(甲) 的坐标是_三、解答题 17.三角形 ABC三个顶点的坐标分别为 A(2,3) 、 B(3,2)、 C(2,1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点 A1、 B1、 C1,依次用线段连接 A1、 B1、 C1所得A1B1C1.

6、(1)分别写出点 A1、 B1、 C1坐标;(2) A1B1C1与 ABC的大小、形状和位置上有什么关系?18.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:1515的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若 A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜19.若点 M(x, y)在第三象限,且 x, y满足| x2|4,|3 y|5,求点 M的坐标20.(1)如图所示,在平面直角坐标系中,描出下列3个点, A(1,0) , B(5,0), C(3,4);

7、(2)顺次连接点 A、 B、 C,组成三角形 ABC,求三角形 ABC的面积21.点 P(a2,3 a6)到两条坐标轴的距离相等,求点 P的坐标第七章 平面直角坐标系单元练习题答案解析1.【答案】D【解析】一方队正沿箭头所指的方向前进, A的位置为三列三行,表示为(3,3),(5,4) 表示的位置是D.2.【答案】D【解析】因为点 M到 x轴的距离为 3,所以其纵坐标的绝对值是 3,即纵坐标是3;因为到 y轴的距离为2,所以其横坐标的绝对值是 2,横坐标是2;所以 M点的坐标为(2,3),(2 ,3) ,(2,3),( 2,3)3.【答案】B【解析】如图所示:则棋子“将”的点的坐标为:(1,0

8、)4.【答案】D【解析】根据平方数非负数得, m20,所以 m211,因此,点的横坐标1是正数,纵坐标 m21是负数,故点在第四象限5.【答案】A【解析】点(2,6)在第二象限,选项中是第二象限中的点的只有第一个 (4,2)6.【答案】A【解析】点 P的坐标为(3, 2)7.【答案】C【解析】A.(0,4)(0,0)(4,0)都能到达,故本选项错误;B(0,4)(4,4)(4,0) 都能到达,故本选项错误;C(3,4)(4,2)不都能到达,故本选项正确;D(0,4)(1,4)(1,1)(4,1)(4,0) 都能到达,故本选项错误8.【答案】C【解析】如图,小红家的坐标为(400,500),小强

9、家的坐标为( 200,500)9.【答案】1或9【解析】因为 AB平行于 x轴,且 A(4,3), B(x,3),线段 AB的长为5,所以点 B的坐标为 (1,3)或(9 ,3)故 x1或9.10.【答案 】(3,3)或(6,6)【解析】根据题意得|2 a| |3a6| ,所以2 a3 a6或2 a(3 a6),解得 a 1或 a4.所以点 P的坐标是(3,3)或(6,6) 11.【答案 】( 3,2)或(3,2)【解析】因为 P(x, y)到 x轴的距离是 2,到 y轴的距离是3,所以 x3, y2;又因为点 P在 y轴的左侧,所以点 P的横坐标 x3,所以点 P的坐标为(3,2)或( 3,

10、2) 12.【答案 】2【解析】由题意可得线段 AB向右平移1个单位,向上平移了 1个单位,因为 A、 B两点的坐标分别为(1,0)、(0,2) ,所以点 A1、 B1的坐标分别为 (2,1)、(1,3),所以 a b2.13.【答案 】(4,0)或(4,6)【解析】因为点 A(4,3), ABy轴,所以点 B的横坐标为4,因为 AB3,所以点 B的纵坐标为 336或330,所以 B点的坐标为(4,0)或(4,6)14.【答案 】(2,1)或(2,5)【解析】因为 MNy轴,所以点 M与点 N的横坐标相同,所以点 N的横坐标是2,设纵坐标是 y,因而| y(2)|3,解得 y1或5,所以点 N

11、的坐标是(2,1)或(2,5)15.【答案 】(5,1) (3,7) 或(7,3)【解析】根据题意得,白子 B的坐标为(5,1);因为白方已把(4,6)(5,5)(6,4) 三点凑成在一条直线,黑方只有在此三点两端任加一点即可保证不会让白方在短时间内获胜,即(3,7)或(7,3)16.【答案 】(2,1)【解析】如图,白棋(甲) 的坐标是(2,1)17.【答案 】解:(1) A1(1,4), B1(6,1), C1(5,2) ;(2) A1B1C1的大小、形状与 ABC的大小、形状完全一样,仅是位置不同, A1B1C1是将 ABC沿 x轴方向向右平移3个单位,再沿 y轴方向向下平移 1个单位得

12、到的【解析】(1)根据题意进行计算即可;(2)根据坐标与图形的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减18.【答案 】解:因为白棋已经有三个在一条直线上,所以甲必须在(5,3)或(1,7) 位置上落子,才不会让乙马上获胜【解析】根据 A点的位置表示的规律,结合五子棋中白棋已经有三个在一条直线上的情况,合理地选择黑棋的落点19.【答案 】解:因为| x2|4,|3 y|5,所以 x6或 2, y8或2,第三象限内点 M(x, y), x0, y0,则 M的坐标是(2,2)【解析】根据第三象限内点的横坐标小于零,纵坐标小于零,再根据绝对值的意义可得答案20.【答案 】解:(1) 作图如下:(2)三角形 ABC的面积为: 6412.【解析】(1)根据 A(1,0), B(5,0), C(3,4),确定所在的象限,即可解答;(2)根据三角形的面积公式,即可解答21.【答案 】解:因为点 P(a2,3 a6) 到两条坐标轴的距离相等,所以 a 23 a 6或 a23 a60,得 a4或 a1,所以(6,6) 或(3,3)【解析】由点 P到两坐标轴的距离相等,可得到关于 a的方程,可求得 a的值,则可求得点 P的坐标

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 人教版 > 七年级下册