2019版河北省中考数学一轮复习《课题31:视图与投影》同步练习(含答案)

上传人:好样****8 文档编号:33371 上传时间:2018-12-01 格式:DOCX 页数:8 大小:383.09KB
下载 相关 举报
2019版河北省中考数学一轮复习《课题31:视图与投影》同步练习(含答案)_第1页
第1页 / 共8页
2019版河北省中考数学一轮复习《课题31:视图与投影》同步练习(含答案)_第2页
第2页 / 共8页
2019版河北省中考数学一轮复习《课题31:视图与投影》同步练习(含答案)_第3页
第3页 / 共8页
2019版河北省中考数学一轮复习《课题31:视图与投影》同步练习(含答案)_第4页
第4页 / 共8页
2019版河北省中考数学一轮复习《课题31:视图与投影》同步练习(含答案)_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、课题 31 视图与投影A 组 基础题组一、选择题1.(2017 张家口模拟)如图是由三个小正方体组成的一个几何体,它的左视图是( )2.(2018 唐山迁安模拟)下列几何体中,同一个几何体的主视图与左视图不同的是( )3.(2018 江苏无锡中考)下面每个图形都是由 6 个边长相同的正方形拼成的图形,其中能折叠成正方体的是( )二、填空题4.(2017 秦皇岛模拟)已知一个正方体的棱长是 6 cm,那么这个正方体的侧面展开图的面积是 . 5.(2018 唐山模拟)一个圆锥的侧面展开图形是半径为 8 cm,圆心角为 120的扇形,则此圆锥的底面半径为 . 6.(2017 衡水模拟)如图,电灯 P

2、 在横杆 AB 的正上方,AB 在灯光下的影子为CD,ABCD,AB=1.5 m,CD=4.5 m,点 P 到 CD 的距离为 2.7 m,则 AB 与 CD 间的距离是 m. 7.(2017 青海西宁中考)某圆锥的主视图是边长为 4 cm 的等边三角形,则该圆锥侧面展开图的面积是 cm 2. 8.(2018 石家庄模拟)一个无盖的长方体包装盒展开后如图所示(单位:cm),则该包装盒的容积为 cm 3. 三、解答题9.(2017 沧州新华模拟)由几个相同的边长为 1 的小立方块搭成的几何体的俯视图如图所示.方格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个几何体的主视图

3、和左视图;(2)根据三视图,请你求出这个组合体的表面积(包括底面积).10.(2017 邢台模拟)如图,某同学想测量旗杆的高度,他在某一时刻测得 1 米长的竹竿竖直放置时影长是 1.5 米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为 21 米,留在墙上的影高为 2 米,求旗杆的高.B 组 提升题组一、选择题1.(2017 保定模拟)图 1 是边长为 1 的六个小正方形组成的图形,它可以围成图 2 的正方体,则图 1 中小正方形的顶点 A,B 在正方体上的距离是( )A.0 B.1 C. D.2 32.如图所示,由若干个大小相同的正

4、方体搭成的几何体的三视图,该几何体所用的正方体的个数是( )A.6 B.4 C.3 D.23.(2018 河北模拟)如图,一根直立于水平地面的木杆 AB 在灯光下形成影子 AC(ACAB),当木杆绕点 A 按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知 AE=5 m,在旋转过程中,影长的最大值为 5 m,最小值 3 m,且影长最大时,木杆与光线垂直,则路灯 EF 的高度为( )A.10 m B.8.5 m C.7.5 m D.6 m 二、填空题4.(2018 沧州模拟)已知 RtABC 的一条直角边 AB=12 cm,另一条直角边 BC=5 cm,则以 AB为轴旋转一周,所得到的圆

5、锥的表面积是 cm 2. 5.(2017 江西中考)如图,正三棱柱的底面周长为 9,截去一个底面周长为 3 的正三棱柱,所得几何体的俯视图的周长是 . 三、解答题6.(2018 衡水模拟)如图 1,王华同学在晚上由路灯 AC 走向路灯 BD,当他走到点 P 时,发现身后他影子的顶部刚好接触到路灯 AC 的底部,当他向前再走 12 m 到达 Q 点时,发现身前他影子的顶部刚好接触到路灯 BD 的底部.已知王华同学的身高是 1.6 m,两个路灯的高度都是9.6 m.(1)求两个路灯之间的距离;(2)当王华同学走到路灯 BD 处时,如图 2,他在路灯 AC 下的影子长 BF 是多少?7.(2018

6、河北模拟)某几何体的三视图如图所示,已知在EFG 中,FG=18 cm,EG=12 cm,EGF=30,在矩形 ABCD 中,AD=16 cm.(1)说明这个几何体的形状;(2)求 AB 的长;(3)求这个几何体的体积.答案精解精析A 组 基础题组一、选择题1.C 2.A 3.C 二、填空题4.144 cm25. 答案 cm83解析 由于圆锥的底面圆的周长等于展开扇形的弧长,设底面圆的半径为 x,有=2x,x= cm.1208180 836. 答案 1.8解析 ABCD,PABPCD,设 CD 与 AB 的距离为 x m,则 = ,解得1.54.52.7-2.7x=1.8,AB 与 CD 间的

7、距离是 1.8 m7.8 8.800 三、解答题9. 解析 (1)画出主视图与左视图如图所示.(2)根据这个几何体的三视图可知,其俯视图、主视图、左视图分别是由 3、4、5 个正方形组成的,则这个几何体的表面积为(3+4+5)2=24.10. 解析 连接 AC,过 C 作 CEAB 于 E,如图所示.CDBD,ABBD,EBD=CDB=CEB=90.四边形 CDBE 为矩形,则 CE=BD=21 米,BE=CD=2 米.设 AE=x 米,则 11.5=x21,解得 x=14.AE=14 米,AB=AE+BE=14+2=16 米.旗杆的高为 16 米.B 组 提升题组一、选择题1.B 2.A 3

8、.C 当木杆旋转到达地面时,影长最短,为 AB,AB=3 m.影长最长时,木杆与光线垂直,如图所示,此时 AC=5 m,根据勾股定理,求得 BC=4 m.易知影长最长时CABCFE, = ,即 = ,解得 EF=7.5 m.故选 C.4103二、填空题4. 答案 90解析 如图所示,根据旋转的方法可知,圆锥的底面半径为 5 cm,圆锥的高为 12 cm,圆锥的母线长为 =13 cm,圆锥的表面积为 5 2+ 1325=90 cm 2.52+122125.8三、解答题6. 解析 (1)由对称性可知 AP=BQ.设 AP=BQ=x m, MPBD,APMABD, 得 = ,即 = ,1.69.6

9、2+12解得 x=3.AB=2x+12=23+12=18(m).答:两个路灯之间的距离为 18 米.(2)如图 2,设 BF=y m, BEAC,FEBFCA,得 = ,即 = ,1.69.6 +18解得 y=3.6.答:当王华同学走到路灯 BD 处时,他在路灯 AC 下的影子长是 3.6 米. 7. 解析 (1)这个几何体是三棱柱.(2)作 EQFG 于点 Q,则 EQ=AB.在 RtEGQ 中,EG=12 cm,EGF=30,EQ=EGsinEGF =12 =6(cm).12AB=6 cm.(3)由(2)得 EQ=6 cm.FG=18 cm,S EFG = FGEQ= 186=54 cm2.12 12这个几何体的体积为 ADSEFG =1654=864 cm3.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 一轮复习