2018-2019学年山东省日照市七年级下期末数学试卷(含答案详解)

上传人:花好****3 文档编号:188893 上传时间:2021-07-31 格式:DOCX 页数:18 大小:244.44KB
下载 相关 举报
2018-2019学年山东省日照市七年级下期末数学试卷(含答案详解)_第1页
第1页 / 共18页
2018-2019学年山东省日照市七年级下期末数学试卷(含答案详解)_第2页
第2页 / 共18页
2018-2019学年山东省日照市七年级下期末数学试卷(含答案详解)_第3页
第3页 / 共18页
2018-2019学年山东省日照市七年级下期末数学试卷(含答案详解)_第4页
第4页 / 共18页
2018-2019学年山东省日照市七年级下期末数学试卷(含答案详解)_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、2018-2019 学年山东省日照市七年级(下)期末数学试卷学年山东省日照市七年级(下)期末数学试卷 一、选择题: (本大题共一、选择题: (本大题共 12 个小题,每小题个小题,每小题 3 分,满分分,满分 36 分分.在每小题给出的四个选项中,只有一项是符在每小题给出的四个选项中,只有一项是符 合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上 )合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上 ) 1 (3 分)9 的算术平方根是( ) A3 B3 C D 2 (3 分)在下列方程组中,不是二元一次方程组的是( ) A B C D 3 (3 分)如图,一扇窗户打开后,用

2、窗钩 AB 可将其固定,这里所运用的几何原理是( ) A垂线段最短 B两点之间线段最短 C两点确定一条直线 D三角形的稳定性 4 (3 分)在 3.14、0.、中,无理数的个数是( ) A4 个 B3 个 C2 个 D1 个 5 (3 分)下面说法正确的是( ) A检测一批进口食品的质量应采用全面调查 B从 5 万名考生的成绩中抽取 300 名考生的成绩作为样本,样本容量是 5 万 C反应你本学年数学成绩的变化情况宜采用扇形统计图 D一组数据的样本容量是 100,最大值是 141,最小值是 60,取组距为 10,可分为 9 组 6 (3 分)如图,在 A、B 两座工厂之间要修建一条笔直的公路,

3、从 A 地测得 B 地的走向是南偏东 52, 现 A、B 两地要同时开工,若干天后公路准确对接,则 B 地所修公路的走向应该是( ) A北偏西 52 B南偏东 52 C西偏北 52 D北偏西 38 7 (3 分)若一个多边形的内角和为 1080,则这个多边形的边数为( ) A6 B7 C8 D9 8 (3 分)a,b 为实数,且 ab,则下列不等式的变形正确的是( ) Aa+bb+x Ba+2b+2 C3a3b D 9 (3 分)如图,在ABC 中,AD 是角平分线,DEAB 于点 E,ABC 的面积为 28,AB8,DE4, 则 AC 的长是( ) A8 B6 C5 D4 10 (3 分)如

4、图所示,给出下列条件:B+BCD180:12:34,B5; BD其中,一定能判定 ABCD 的条件的个数有( ) A5 个 B4 个 C3 个 D2 个 11 (3 分)若不等式组的整数解共有 4 个,则 a 的取值范围是( ) A6a7 B6a7 C6a7 D6a7 12 (3 分)如图,在平面直角坐标系中,一动点从原点 O 出发,按向上、向右、向下、向右的方向依次不 断地移动,每次移动一个单位,得到点 A1(0,1) 、A2(1,1) 、A3(1,0) 、A4(2,0) ,那么点 A2019 的坐标为( ) A (1008,1) B (1009,1) C (1009,0) D (1010,

5、0) 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 4 分,满分分,满分 16 分分.不需写出解答过程,请将答案直接写在答题卡相不需写出解答过程,请将答案直接写在答题卡相 应位置上 )应位置上 ) 13 (4 分)已知点 A 在第三象限,到 x 轴的距离是 2,到 y 轴的距离是 1,那么点 A 的坐标是 14 (4 分)已知(m+2)x|m| 1+30 是关于 x 的一元一次不等式,则 m 的值为 15 (4 分)三角形一边长为 4,另一边长为 7,且第三边长为奇数,则第三边的长为 16 (4 分)如图,已知 ABCD,直线 MN 分别交 AB,CD 于点 M,B,

6、NG 平分MND 交 AB 于点 G,若 1110,则2 的度数 三、解答题(本大题共三、解答题(本大题共 6 小题,满分小题,满分 63 分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、 证明过程或演算步骤证明过程或演算步骤.) 17 (5 分) (1)解方程组 (2)解不等式组: 18(10 分) 某地为了解青少年视力情况, 现随机抽查了若干名初中学生进行视力情况统计, 分为视力正常、 轻度近视、重度近视三种情况,并绘成如图所示的条形统计图和扇形统计图(不完整) 请你根据图中信 息解答下列问题: (1)求这次被抽查的学生一

7、共有多少人? (2)求被抽查的学生中轻度近视的学生人数,并将条形统计图补充完整; (3)若某地有 4 万名初中生,请估计视力不正常(包括轻度近视、重度近视)的学生共有多少人? 19 (10 分)如图,ABC 在平面直角坐标系 xOy 中 (1)请直接写出点 A、B 两点的坐标:A ;B (2)若把ABC 向上平移 3 个单位,再向右平移 2 个单位得ABC,请在右图中画出ABC,并 写出点 C的坐标 ; (3)求ABC 的面积是多少? 20 (12 分)如图,在ABC 中,AD 是高,AE,BF 分别是BAC,ABC 的角平分线,它们相交于点 O, BAC50,CBAC+20,求DAC 和BO

8、A 的度数 21 (12 分)如图 1,ABCD,点 E 是直线 AB、CD 之间的一点,连接 EA、EC (1)问题发现: 若A15,C45,则AEC 猜想图 1 中EAB、ECD、AEC 的数量关系,并证明你的结论 (2)如图 2,ABCD,线段 MN 把 ABDC 这个封闭区域分为、两部分(不含边界) ,点 E 是位于这 两个区域内的任意一点,请直接写出EMB、END、MEN 的数量关系 22 (14 分)随着气温的升高,空调的需求量大增某家电超市对每台进价分别为 2000 元、1700 元的 A、B 两种型号的空调,近两周的销售情况统计如下: 销售时段 销售量 销售收入 A 型号 B

9、型号 第一周 6 台 7 台 31000 元 第二周 8 台 11 台 45000 元 (1)求 A、B 两种型号的空调的销售价; (2)若该家电超市准备用不多于 54000 的资金,采购这两种型号的空调 30 台,求 A 种型号的空调最多 能采购多少台? (3)在(2)的条件下,该家电超市售完这 30 台空调能否实现利润不低于 15800 元的目标?若能,请给 出采购方案若不能,请说明理由 2018-2019 学年山东省日照市七年级(下)期末数学试卷学年山东省日照市七年级(下)期末数学试卷 参考答案与试题解析参考答案与试题解析 一、选择题: (本大题共一、选择题: (本大题共 12 个小题,

10、每小题个小题,每小题 3 分,满分分,满分 36 分分.在每小题给出的四个选项中,只有一项是符在每小题给出的四个选项中,只有一项是符 合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上 )合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上 ) 1 (3 分)9 的算术平方根是( ) A3 B3 C D 【分析】根据开方运算,可得算术平方根 【解答】解:9 的算术平方根是 3, 故选:B 【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根 2 (3 分)在下列方程组中,不是二元一次方程组的是( ) A B C D 【分析】 二元一次方程组的定义的三要点: 1、 只有两个

11、未知数; 2、 未知数的项最高次数都应是一次; 3、 都是整式方程 【解答】解:选项 C 中的第二个方程是分式方程,所以它不是二元一次方程组 故选:C 【点评】考查了二元一次方程组的应用要紧扣二元一次方程组的定义的三要点:1、只有两个未知数; 2、未知数的项最高次数都应是一次;3、都是整式方程 3 (3 分)如图,一扇窗户打开后,用窗钩 AB 可将其固定,这里所运用的几何原理是( ) A垂线段最短 B两点之间线段最短 C两点确定一条直线 D三角形的稳定性 【分析】根据三角形的性质,可得答案 【解答】解:一扇窗户打开后,用窗钩 AB 可将其固定,这里所运用的几何原理是三角形的稳定性, 故选:D

12、【点评】本题考查了三角形的稳定性,利用三角形的稳定性是解题关键 4 (3 分)在 3.14、0.、中,无理数的个数是( ) A4 个 B3 个 C2 个 D1 个 【分析】根据无理数、有理数的定义即可判定选择项 【解答】解:1, 3.14、0.、是有理数,是无理数 故选:D 【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理 数如 ,0.8080080008(每两个 8 之间依次多 1 个 0)等形式 5 (3 分)下面说法正确的是( ) A检测一批进口食品的质量应采用全面调查 B从 5 万名考生的成绩中抽取 300 名考生的成绩作为样本,样本容量是 5

13、 万 C反应你本学年数学成绩的变化情况宜采用扇形统计图 D一组数据的样本容量是 100,最大值是 141,最小值是 60,取组距为 10,可分为 9 组 【分析】根据统计中各个统计量的意义以及全面调查、抽样调查、样本容量、扇形统计图的特点等知识 逐个进行判断 【解答】 解: 检测一批进口食品的质量不适合全面调查, 数量极大, 适合抽样调查, 因此 A 选项不正确; B 中样本容量是 300,不是 5 万,B 选项不正确, 反应数学成绩的变化情况适合使用折线统计图,不是扇形统计图,因此 C 选项不正确, (14160)108.1,故可分为 9 组,因此 D 选项正确 故选:D 【点评】考查统计中

14、,全面调查、抽样调查、样本、样本容量、扇形统计图等知识,理解各个概念和相 应的知识是解决问题的关键 6 (3 分)如图,在 A、B 两座工厂之间要修建一条笔直的公路,从 A 地测得 B 地的走向是南偏东 52, 现 A、B 两地要同时开工,若干天后公路准确对接,则 B 地所修公路的走向应该是( ) A北偏西 52 B南偏东 52 C西偏北 52 D北偏西 38 【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线 所成的角(一般指锐角) ,通常表达成北(南)偏东(西)度根据方位角的概念,画图正确表示出 方位角,即可求解 【解答】解:北偏西 52 故选:A

15、【点评】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键 7 (3 分)若一个多边形的内角和为 1080,则这个多边形的边数为( ) A6 B7 C8 D9 【分析】首先设这个多边形的边数为 n,由 n 边形的内角和等于 180(n2) ,即可得方程 180(n2) 1080,解此方程即可求得答案 【解答】解:设这个多边形的边数为 n, 根据题意得:180(n2)1080, 解得:n8 故选:C 【点评】此题考查了多边形的内角和公式此题比较简单,注意熟记公式是准确求解此题的关键,注意 方程思想的应用 8 (3 分)a,b 为实数,且 ab,则下列不等式的变形正确的是( )

16、Aa+bb+x Ba+2b+2 C3a3b D 【分析】根据不等式的性质 1,可判断 A,根据不等式的性质 3、1 可判断 B,根据不等式的性质 2,可 判断 C、D 【解答】解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故 A 错误; B、不等式两边先同乘以1,再加上 2,不等式的两边都乘或除以同一个负数,不等号的方向改变,故 B 错误; C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故 C 正确; D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故 D 错误; 故选:C 【点评】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变

17、9 (3 分)如图,在ABC 中,AD 是角平分线,DEAB 于点 E,ABC 的面积为 28,AB8,DE4, 则 AC 的长是( ) A8 B6 C5 D4 【分析】过点 D 作 DFAC 于 F,然后利用ABC 的面积公式列式计算即可得解 【解答】解:过点 D 作 DFAC 于 F, AD 是ABC 的角平分线,DEAB, DEDF4, SABC84+AC428, 解得 AC6 故选:B 【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角 形的面积列出方程是解题的关键 10 (3 分)如图所示,给出下列条件:B+BCD180:12:34,B5; B

18、D其中,一定能判定 ABCD 的条件的个数有( ) A5 个 B4 个 C3 个 D2 个 【分析】 根据平行线的判定方法: 同旁内角互补, 两直线平行可得能判定 ABCD; 根据内错角相等, 两直线平行可得能判定 ABCD;根据同位角相等,两直线平行可得能判定 ABCD 【解答】解:B+BCD180, ABCD; 12, ADCB; 34, ABCD; B5, ABCD, 由BD,不能判定 ABCD; 一定能判定 ABCD 的条件为: 故选:C 【点评】此题主要考查了平行线的判定,关键是熟练掌握平行线的判定定理 11 (3 分)若不等式组的整数解共有 4 个,则 a 的取值范围是( ) A6

19、a7 B6a7 C6a7 D6a7 【分析】 首先确定不等式组的解集, 利用含 a 的式子表示, 根据整数解的个数就可以确定有哪些整数解, 根据解的情况可以得到关于 a 的不等式,从而求出 a 的范围 【解答】解:解不等式 2x31,得:x2, 不等式解集为:2xa 不等式组的整数解有 4 个, 不等式组的 4 个整数解为 3、4、5,6 则 6a7, 故选:A 【点评】本题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大, 同小取较小,小大大小中间找,大大小小解不了解题关键是分析得出整数解的值,进一步确定字母的 取值范围 12 (3 分)如图,在平面直角坐标系中,

20、一动点从原点 O 出发,按向上、向右、向下、向右的方向依次不 断地移动,每次移动一个单位,得到点 A1(0,1) 、A2(1,1) 、A3(1,0) 、A4(2,0) ,那么点 A2019 的坐标为( ) A (1008,1) B (1009,1) C (1009,0) D (1010,0) 【分析】动点 O 在平面直角坐标系中按向上、向右、向下、向右的方向依次不断地移动,只要求出前几 个坐标,然后根据坐标找规律 【解答】解:根据题意和图的坐标可知:每次都移动一个单位长度,中按向上、向右、向下、向右的方 向依次不断地移动 A1(0,1) 、A2(1,1) 、A3(1,0) 、 A4(2,0)

21、,A5(2,1) 、A6(3,1) 、A7(3,0) 坐标变体的规律:每移动 4 次,它的纵坐标都为 1,而横坐标向右移动了 2 个单位长度,也就是移动 次数的一半; 201945043 A2019纵坐标是 A3的纵坐标 0;A2019横坐标是 0+2504+11009 那么点 A2019的坐标为(1009,0) 故选:C 【点评】主要考查学生找规律能力和数形结合的能力,解题的思路:结合图形找出坐标的移动规律,从 移动规律中计算其纵坐标和横坐标的变化,从而计算点 A2019的坐标 二、填空题(本大题共二、填空题(本大题共 4 小题,每小题小题,每小题 4 分,满分分,满分 16 分分.不需写出

22、解答过程,请将答案直接写在答题卡相不需写出解答过程,请将答案直接写在答题卡相 应位置上 )应位置上 ) 13(4 分) 已知点 A 在第三象限, 到 x 轴的距离是 2, 到 y 轴的距离是 1, 那么点 A 的坐标是 (1, 2) 【分析】根据第三象限点的横坐标与纵坐标都是负数,点到 x 轴的距离等于纵坐标的长度,到 y 轴的距 离等于横坐标的长度解答即可 【解答】解:点 A 在第三象限内,点 A 到 x 轴的距离是 2,到 y 轴的距离是 1, 点 A 的横坐标为1,纵坐标为2, 点 A 的坐标为(1,2) 故答案为: (1,2) 【点评】本题考查了点的坐标,熟记点到 x 轴的距离等于纵坐

23、标的长度,到 y 轴的距离等于横坐标的长 度是解题的关键 14 (4 分)已知(m+2)x|m| 1+30 是关于 x 的一元一次不等式,则 m 的值为 2 【分析】利用一元一次不等式的定义判断即可确定出 m 的值 【解答】解:依题意得:|m|111 且 m+20, 解得 m2 故答案是:2 【点评】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键 15 (4 分)三角形一边长为 4,另一边长为 7,且第三边长为奇数,则第三边的长为 5,7,9 【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边即可求解 【解答】解:第三边的取值范围是大于 3 而小于

24、 11,又第三边长为奇数,故第三边的长为 5,7,9 故答案为:5,7,9 【点评】考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边还要注意第三边长为 奇数这一条件 16 (4 分)如图,已知 ABCD,直线 MN 分别交 AB,CD 于点 M,B,NG 平分MND 交 AB 于点 G,若 1110,则2 的度数 35 【分析】先求得AMN 的度数,再根据平行线的性质得出AMNMND,2GND,再由角平分 线的定义即可得出结论 【解答】解:1110, AMN70, ABCD, AMNMND70,2GND NG 平分MND, GNDMND35, 2GND35 故答案为:35 【点评

25、】本题考查的是平行线的性质的运用,解题时注意:两直线平行,同位角相等,内错角相等 三、解答题(本大题共三、解答题(本大题共 6 小题,满分小题,满分 63 分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、 证明过程或演算步骤证明过程或演算步骤.) 17 (5 分) (1)解方程组 (2)解不等式组: 【分析】 (1)利用加减消元法求解可得; (2)分别求出各不等式的解集,再根据“大小小大中间找”求出其公共解集 【解答】解: (1) 2,得 8x+2y20 +,得 11x55, 解得,x5, 将 x5 代入,得 45+y10,

26、解得,y10, 所以这个方程组的解是: (2)解:, 解不等式,得 2x4 解得,x2 解不等式,得 x+44 解得 x0 所以这个不等式组的解集是: 2x0 【点评】此题主要考查了二元一次方程组,一元一次不等式(组)的解法,严格遵循解不等式的基本步 骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变 18(10 分) 某地为了解青少年视力情况, 现随机抽查了若干名初中学生进行视力情况统计, 分为视力正常、 轻度近视、重度近视三种情况,并绘成如图所示的条形统计图和扇形统计图(不完整) 请你根据图中信 息解答下列问题: (1)求这次被抽查的学生一共有多少人? (2)求被抽查的

27、学生中轻度近视的学生人数,并将条形统计图补充完整; (3)若某地有 4 万名初中生,请估计视力不正常(包括轻度近视、重度近视)的学生共有多少人? 【分析】 (1)用正常的人数除以对应的百分比即可; (2)用总人数减去正常和重度的人数就是轻度的人数,据数据补全统计图 (3)全校总人数乘以不正常的百分比即可 【解答】解: (1)410%40(人)答:这次被抽查的学生一共是 40 名; (2)被抽查的学生中轻度近视的学生人数:4042412(人) , 补全统计图如图所示; (3)4(110%)3.6 万 答:某地 4 万名初中生,估计视力不正常(包括轻度近视、重度近视)的学生共有 3.6 万人 【点

28、评】本题主要考查了条形统计图,用样本估计总体及扇形统计图,弄清题意是解本题的关键 19 (10 分)如图,ABC 在平面直角坐标系 xOy 中 (1)请直接写出点 A、B 两点的坐标:A (1,1) ;B (4,2) (2)若把ABC 向上平移 3 个单位,再向右平移 2 个单位得ABC,请在右图中画出ABC,并 写出点 C的坐标 (3,6) ; (3)求ABC 的面积是多少? 【分析】 (1)依据点 A、B 两点的位置,即可得到其坐标; (2)依据ABC 向上平移 3 个单位,再向右平移 2 个单位得ABC,即可得到ABC; (3)依据割补法进行计算,即可得到ABC 的面积 【解答】解: (

29、1)点 A 的坐标为: (1,1) ;点 B 的坐标为: (4,2) ; 故答案为: (1,1) ; (4,2) ; (2)如图所示:ABC即为所求,点 C的坐标为: (3,6) ; 故答案为: (3,6) ; (3)ABC 的面积是:452413357 【点评】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照 平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形 20 (12 分)如图,在ABC 中,AD 是高,AE,BF 分别是BAC,ABC 的角平分线,它们相交于点 O, BAC50,CBAC+20,求DAC 和BOA 的度数 【分析】求出

30、C,根据三角形内角和定理求出ABC,根据角平分线的定义求出BAE 和ABF,根据 高求出ADC,根据三角形内角和定理求出即可 【解答】解:BAC50,CBAC+20, C70, ADBC, ADC90, CAD180CADC20; BAC50,C70, ABC180BACC60, AE、BF 分别是BAC、ABC 的角平分线, BAEBAC25,ABFABC30, BOA180BAEABF1802530125, 所以DAC20,BOA125 【点评】本题考查了角平分线的定义,高的定义和三角形的内角和定理,能求出各个角的度数是解此题 的关键 21 (12 分)如图 1,ABCD,点 E 是直线

31、AB、CD 之间的一点,连接 EA、EC (1)问题发现: 若A15,C45,则AEC 60 猜想图 1 中EAB、ECD、AEC 的数量关系,并证明你的结论 (2)如图 2,ABCD,线段 MN 把 ABDC 这个封闭区域分为、两部分(不含边界) ,点 E 是位于这 两个区域内的任意一点,请直接写出EMB、END、MEN 的数量关系 【分析】 (1) 过点 E 作 EFCD, 依据平行线的性质, 即可得出AEC 的度数; 过点 E 作 EFCD, 依据平行线的性质,即可得出AECEAB+ECD (2)分两种情况讨论:当点 E 位于区域时,EMB+END+MEN360;当点 E 位于区域时,

32、EMB+ENDMEN 【解答】解: (1)如图 1,过点 E 作 EFCD, ABDC EFAB(平行于同一条直线的两直线平行) , 1EAB,2ECD(两直线平行,内错角相等) , AEC1+2EAB+ECD60 故答案为:60; 猜想:AECEAB+ECD 理由:如图 1,过点 E 作 EFCD, ABDC EFAB(平行于同一条直线的两直线平行) , 1EAB,2ECD(两直线平行,内错角相等) , AEC1+2EAB+ECD (2)如图 2,当点 E 位于区域时,EMB+END+MEN360; 如图 3,当点 E 位于区域时,EMB+ENDMEN 【点评】本题主要考查了平行线的性质,解

33、决问题的关键是作平行线,利用平行线的性质得出结论 22 (14 分)随着气温的升高,空调的需求量大增某家电超市对每台进价分别为 2000 元、1700 元的 A、B 两种型号的空调,近两周的销售情况统计如下: 销售时段 销售量 销售收入 A 型号 B 型号 第一周 6 台 7 台 31000 元 第二周 8 台 11 台 45000 元 (1)求 A、B 两种型号的空调的销售价; (2)若该家电超市准备用不多于 54000 的资金,采购这两种型号的空调 30 台,求 A 种型号的空调最多 能采购多少台? (3)在(2)的条件下,该家电超市售完这 30 台空调能否实现利润不低于 15800 元的

34、目标?若能,请给 出采购方案若不能,请说明理由 【分析】 (1)设 A 种型号的空调的销售价为 x 元,B 种型号的空调的销售价为 y 元,根据总价单价 数量结合近两周的销售情况统计表,即可得出关于 x,y 的二元一次方程组,解之即可得出结论; (2)设采购 A 种型号空调 m 台,则采购 B 种型号的空调(30m)台,根据总价单价数量结合采 购资金不多于 54000 元,即可得出关于 m 的一元一次不等式,解之取其中的最大值即可得出结论; (3)由(2)的结论结合 m8 及 m 为整数,即可得出各采购方案 【解答】解: (1)设 A 种型号的空调的销售价为 x 元,B 种型号的空调的销售价为

35、 y 元, 依题意,得:, 解得: 答:A 种型号的空调的销售价为 2600 元,B 种型号的空调的销售价为 2200 元 (2)设采购 A 种型号空调 m 台,则采购 B 种型号的空调(30m)台, 依题意,得:2000m+1700(30m)54000, 解得:m10 答:最多采购 A 种型号的空调 10 台 (3)依题意,得: (26002000)m+(22001700) (30m)15800, 解得:m8 m10, 8m10 m 为整数, m8,9,10, 共有 3 种采购方案,方案:采购 A 型号空调 8 台,B 型号的空调 22 台;方案:采购 A 型号空调 9 台,B 型号的空调 21 台;方案:采购 A 型号空调 10 台,B 型号的空调 20 台 【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是: (1)找准等量 关系,正确列出二元一次方程组; (2)根据各数量之间的关系,正确列出一元一次不等式; (3)根据 m 的取值范围及 m 为整数,找出各采购方案

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 期末试卷 > 七年级下