2020-2021学年山东省青岛市市北区八年级上期中数学试卷(含答案解析)

上传人:理想 文档编号:166361 上传时间:2020-12-29 格式:DOCX 页数:17 大小:613.81KB
下载 相关 举报
2020-2021学年山东省青岛市市北区八年级上期中数学试卷(含答案解析)_第1页
第1页 / 共17页
2020-2021学年山东省青岛市市北区八年级上期中数学试卷(含答案解析)_第2页
第2页 / 共17页
2020-2021学年山东省青岛市市北区八年级上期中数学试卷(含答案解析)_第3页
第3页 / 共17页
2020-2021学年山东省青岛市市北区八年级上期中数学试卷(含答案解析)_第4页
第4页 / 共17页
2020-2021学年山东省青岛市市北区八年级上期中数学试卷(含答案解析)_第5页
第5页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2020-2021 学年山东省青岛市市北区八年级学年山东省青岛市市北区八年级上上期中数学试卷期中数学试卷 一、选择题一、选择题 1(3 分)下列语句正确的是( ) A一个数的平方等于它本身,则这个数是 0,1,1 B平方根等于本身的数是 1 C立方根等于本身的数是 1 D算术平方根等于本身的数是 0 和 1 2(3 分)若点A(3,y1)和点B(1,y2)都在如图所示的直线上,则y1与y2的大小关系为( ) Ay1y2 By1y2 Cy1 y2 Dy1y2 3 (3 分)如果用,a、b、c表示ABC的三边,那么分别满足下列条件的三角形中,直角三角形有( ) b 2c2a2 a:b:c3:4:5

2、 CAB A:B:C12:13:15 A1 个 B2 个 C3 个 D4 个 4(3 分)在方格纸上画出的小旗图案如图所示,若用(2,1)表示A点,(2,5)表示B点,那么 C点的位置可表示为( ) A(3,5) B(5,3) C(1,3) D(1,2) 5 (3 分) 若实数m、n满足|m3|+0, 且m、n恰好是 RtABC的两条边长, 则ABC的周长是 ( ) A5 B5 或 C12 D12 或 7+ 6(3 分)直线ykx+b经过一、三、四象限,则直线ybxk的图象只能是图中的( ) A B C D 二、填空题(本题满分二、填空题(本题满分 2424 分,共有分,共有 8 8 道小题,

3、每小题道小题,每小题 3 3 分)分) 7(3 分)在下列各数:、0、0. 、2.101001(每两个 1 之间依次多一个 0) 中,有 个无理数 8(3 分)若函数是正比例函数,则常数m的值是 9(3 分)比较大小:2 3(用符号“,”填空) 10(3 分)直线l1与直线yx3 平行,且与直线yx+5 相交于y轴上同一点,则直线l1的表达式 为 11(3 分)如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB5,AD13, 则EF 12(3 分)如图,在 RtABC中,ACB90,ACBC,边AC落在数轴上,点A表示的数是 1,点C表 示的数是 3以点A为圆心、AB

4、长为半径画弧交数轴负半轴于点B1,则点B1所表示的数是 13(3 分)如图,长方体的底面边长分别为 1cm和 3cm,高为 6cm如果用一根细线从点A开始经过 4 个 侧面缠绕一圈到达点B,那么所用细线最短需要 cm 14(3 分)已知O为平面直角坐标系的坐标原点,等腰三角形AOB中,A(2,4),点B是x轴上的点, 则AOB的面积为 三、作图并解答(本题满分 10 分) 15(10 分)在如图方格纸中,每个小方格的边长为 1请按要求解答下列问题: (1)以格点为顶点,画一个三角形ABC,使ACB90,三边中有两边边长都是无理数; (2)在图中建立正确的平面直角坐标系,并写出ABC各顶点的坐标

5、; (3)作ABC关于y轴的轴对称图形ABC(不要求写作法) 四、解答题(本题共有 7 道小题,满分 68 分) 16(16 分)计算: (1)5+; (2); (3); (4) 17(8 分)求满足下列各式的未知数x (1)x 2 ; (2)(x2) 30.216 18(8 分)观察图形回答问题 (1)所给坐标分别代表图中的哪个点? (3,1): ; (1,2): ; (2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间 有何关系: 连接点 与点 的直线平行于x轴,这两点的坐标的共同特点是 ; 连接点 与点 的直线是第一、三象限的角平分线,这两点的坐标

6、的共同特点是 19(8 分)小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本 1 元,甲商店的优惠条 件是:购买 10 本及以上,从第 11 本开始按标价的七折销售;乙商店的优惠条件是从第 1 本开始就按标 价的八五折销售 (1)求在甲、乙两个商店购买这种练习本分别应付的金额y甲元、y乙元与购买本数x(x10)本之间的 函数关系式; (2)小明现有 24 元,最多可以买多少本练习本? 20(8 分)观察下列各式: 1+1 1+1 1+1 请你根据上面三个等式提供的信息,猜想: (1) (2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式: ; (3)利用上述规律

7、计算:(仿照上式写出过程) 21(8 分)如图,已知等腰ABC中,ABAC,BC20cm,D是边AB上一点,且CD16cm,BD12cm (1)求AD的长; (2)求ABC中BC边上的高 22(12 分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距 离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图 所示: (1)客车的速度是 千米/小时,出租车的速度为 千米/小时; y1关于x的函数关系式为 y2关于x的函数关系式为 (2)求两车相遇的时间; (3)在两车的运动方式和客车行驶速度不变的情况下,求出租车为提前

8、25 分钟与客车相遇,应将速度 提高为每小时多少千米 参考答案参考答案 一、选择题(本题满分 18 分,共有 6 道小题,每小题 3 分)下列每小题都给出标号为 A、B、C、D 的四个 结论,其中只有一个是正确的.每小题选对得分:不选、选错或选出的标号超过一个的不得分. 1(3 分)下列语句正确的是( ) A一个数的平方等于它本身,则这个数是 0,1,1 B平方根等于本身的数是 1 C立方根等于本身的数是 1 D算术平方根等于本身的数是 0 和 1 解:A、平方等于它本身的数是 0,1,故A错误; B、平方根等于本身的数是 0,故B错误; C、立方根等于本身的数是 0,1,故C错误; D、算术

9、平方根等于本身的数是 0 和 1,故D正确 故选:D 2(3 分)若点A(3,y1)和点B(1,y2)都在如图所示的直线上,则y1与y2的大小关系为( ) Ay1y2 By1y2 Cy1 y2 Dy1y2 解:观察函数图象,可知:y随x的增大而减小, 31, y1y2 故选:A 3 (3 分)如果用,a、b、c表示ABC的三边,那么分别满足下列条件的三角形中,直角三角形有( ) b 2c2a2 a:b:c3:4:5 CAB A:B:C12:13:15 A1 个 B2 个 C3 个 D4 个 解:b 2c2a2,可以变形为 b 2+a2c2,是直角三角形; a:b:c3:4:5, 设a3x,b4

10、x,c5x, (3x) 2+(4x)2(5x)2, a 2+b2c2, 是直角三角形; CAB, C+BA, C+B+A180, A90, 是直角三角形; A:B:C12:13:15, 设A18090 不是直角三角形; 则直角三角形有 3 个, 故选:C 4(3 分)在方格纸上画出的小旗图案如图所示,若用(2,1)表示A点,(2,5)表示B点,那么 C点的位置可表示为( ) A(3,5) B(5,3) C(1,3) D(1,2) 解:如图所示:C点的位置可表示为(1,3), 故选:C 5 (3 分) 若实数m、n满足|m3|+0, 且m、n恰好是 RtABC的两条边长, 则ABC的周长是 (

11、) A5 B5 或 C12 D12 或 7+ 解:|m3|+0, |m3|0,0, m30,n40, 解得,m3,n4, 当 4 是直角边时,斜边长5, 则ABC的周长3+4+512, 当 4 是斜边时,另一条直角边, 则ABC的周长3+4+7+, 故选:D 6(3 分)直线ykx+b经过一、三、四象限,则直线ybxk的图象只能是图中的( ) A B C D 解:直线ykx+b经过第一、三、四象限, k0,b0, k0, 直线ybxk经过第二、三、四象限 故选:C 二、填空题(本题满分 24 分,共有 8 道小题,每小题 3 分) 7(3 分)在下列各数:、0、0. 、2.101001(每两个

12、 1 之间依次多一个 0) 中,有 3 个无理数 解:0 是整数,属于有理数; 0. 是循环小数,属于有理数; 6,是整数,属于有理数; 是分数,属于有理数; 无理数有:、2.101001(每两个 1 之间依次多一个 0)共 3 个 故答案为:3 8(3 分)若函数是正比例函数,则常数m的值是 2 解:由正比例函数的定义可得:m 231,且 m+20, 解得:m2 m2 故答案为 2 9(3 分)比较大小:2 3(用符号“,”填空) 解:44,45, 4445, 23 故答案为: 10(3 分)直线l1与直线yx3 平行,且与直线yx+5 相交于y轴上同一点,则直线l1的表达式 为 yx+5

13、解:设直线l1的解析式为ykx+b, 直线l1与直线yx3 平行, k, 把x0 代入yx+5 得y5,即直线yx+5 与y轴的交点坐标为(0,5), 把(0,5)代入yx+b得b5, 该一次函数图象表达式为yx+5 故答案为yx+5 11(3 分)如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB5,AD13, 则EF 解:四边形ABCD是长方形, B90, AEF是由ADE翻折, ADAF13,DEEF, 在 RtABF中,AF13,AB5, BF12, CFBCBF13121 EF 2EC2+CF2, EF 2(5EF)2+1, EF, 故答案为: 12(3 分

14、)如图,在 RtABC中,ACB90,ACBC,边AC落在数轴上,点A表示的数是 1,点C表 示的数是 3以点A为圆心、AB长为半径画弧交数轴负半轴于点B1,则点B1所表示的数是 12 解:根据题意,AC312, ACB90,ACBC, AB2, 点B1表示的数是 12 故答案为:12 13(3 分)如图,长方体的底面边长分别为 1cm和 3cm,高为 6cm如果用一根细线从点A开始经过 4 个 侧面缠绕一圈到达点B,那么所用细线最短需要 10 cm 解:将长方体展开,连接A、B, AA1+3+1+38(cm),AB6cm, 根据两点之间线段最短,AB10cm 故答案为:10 14(3 分)已

15、知O为平面直角坐标系的坐标原点,等腰三角形AOB中,A(2,4),点B是x轴上的点, 则AOB的面积为 8 或 4或 10 解:如图所示:过点A作AEx轴于点E, 点O(0,0),A(2,4), AE4,OE2,OA2, 当OAAB时,B的坐标为(4,0),此时SAOBAE8; 当OAOB时,B的坐标为(,0),此时SAOBAE44; 当OBAB时,B的坐标为(5,0),此时SAOBAE10; AOB的面积为:8 或 4或 10 故答案为:8 或 4或 10 三、作图并解答(本题满分 10 分) 15(10 分)在如图方格纸中,每个小方格的边长为 1请按要求解答下列问题: (1)以格点为顶点,

16、画一个三角形ABC,使ACB90,三边中有两边边长都是无理数; (2)在图中建立正确的平面直角坐标系,并写出ABC各顶点的坐标; (3)作ABC关于y轴的轴对称图形ABC(不要求写作法) 解:(1)如图,ABC即为所求(答案不唯一) (2)平面直角坐标系如图所示,A(0,0),B(5,0),C(4,2) (3)如图,ABC即为所求 四、解答题(本题共有 7 道小题,满分 68 分) 16(16 分)计算: (1)5+; (2); (3); (4) 解:(1)5+ 25+ 2+ ; (2) 2 23 1; (3) 124+1+34 124; (4) +4 10+4 14 17(8 分)求满足下列

17、各式的未知数x (1)x 2 ; (2)(x2) 30.216 解:(1)x 2 , x; (2)(x2) 30.216, x20.6, x1.4 18(8 分)观察图形回答问题 (1)所给坐标分别代表图中的哪个点? (3,1): C ; (1,2): F ; (2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间 有何关系: 连接点 C 与点 D 的直线平行于x轴, 这两点的坐标的共同特点是 纵坐标相等, 横坐标不相等 ; 连接点 O 与点 H 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是 横坐标与纵 坐标相等 解:(1)由图形可知,(3,1

18、)表示点C;(1,2)表示点F; 故答案为:C;F; (2) 连接点C与点D的直线平行于x轴 (或连接点E与点F的直线平行于x轴或连接点G与点H的直 线平行于x轴),这两点的坐标的共同特点是纵坐标相等,横坐标不相等 故答案为:C,D(或E,F或G,H),纵坐标相等,横坐标不相等; 连接点O与点H的直线是第一、 三象限的角平分线, 这两点的坐标的共同特点是横坐标与纵坐标相等 故答案为:O,H,横坐标与纵坐标相等 19(8 分)小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本 1 元,甲商店的优惠条 件是:购买 10 本及以上,从第 11 本开始按标价的七折销售;乙商店的优惠条件是从

19、第 1 本开始就按标 价的八五折销售 (1)求在甲、乙两个商店购买这种练习本分别应付的金额y甲元、y乙元与购买本数x(x10)本之间的 函数关系式; (2)小明现有 24 元,最多可以买多少本练习本? 解:(1)由题意可得, y甲101+(x10)10.70.7x+3, y乙x10.850.85x, 即y甲0.7x+3(x10),y乙0.85x(x10); (2)当y甲24 时,240.7x+3,解得x30, 当y乙24 时,240.85x,解得x28, 3028, 小明现有 24 元,最多可以买 30 本练习本 20(8 分)观察下列各式: 1+1 1+1 1+1 请你根据上面三个等式提供的

20、信息,猜想: (1) 1 (2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式: 1+ ; (3)利用上述规律计算:(仿照上式写出过程) 解:(1)11;故答案为:1; (2)1+1+;故答案为:1+; (3) 21(8 分)如图,已知等腰ABC中,ABAC,BC20cm,D是边AB上一点,且CD16cm,BD12cm (1)求AD的长; (2)求ABC中BC边上的高 解:(1)BC20cm,且CD16cm,BD12cm, BD 2+CD2BC2, BDC90, ADC90, 设ADxcm,则ACAB(x+12)cm, 在 RtADC中,由勾股定理得:AD 2+CD2AC2,

21、 即x 2+162(x+12)2, 解得:x, 即ADcm; (2)ABAC+12(cm), 过A作AEBC于E,则AE是ABC的高, ABAC,BC20cm, BECE10(cm), 在 RtAEB中,由勾股定理得:AE(cm), 即ABC中BC边上的高是cm 22(12 分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距 离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图 所示: (1)客车的速度是 60 千米/小时,出租车的速度为 100 千米/小时; y1关于x的函数关系式为 y160 x y2关于x的函

22、数关系式为 y2100 x+600 (2)求两车相遇的时间; (3)在两车的运动方式和客车行驶速度不变的情况下,求出租车为提前 25 分钟与客车相遇,应将速度 提高为每小时多少千米 解:(1)由图象可得, 客车的速度为:6001060(千米/小时), 出租车的速度为:6006100(千米/小时), y1关于x的函数关系式为y160 x, y2关于x的函数关系式为y2100 x+600, 故答案为:60,100;y160 x,y2100 x+600; (2)令 60 x100 x+600, 解得x, 即时两车相遇; (3)时3 小时 45 分钟,出租车提前 25 分钟与客车相遇, 出租车出发的时间为 3 小时 20 分钟, 3 小时 20 分钟3小时, 出租车的速度为:600360120(千米/小时), 即出租车为提前 25 分钟与客车相遇,应将速度提高为每小时 120 千米

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 期中试卷 > 八年级上