2020年秋北师大版七年级上数学期中复习试卷(含答案解析)

上传人:理想 文档编号:160544 上传时间:2020-11-08 格式:DOCX 页数:9 大小:91.47KB
下载 相关 举报
2020年秋北师大版七年级上数学期中复习试卷(含答案解析)_第1页
第1页 / 共9页
2020年秋北师大版七年级上数学期中复习试卷(含答案解析)_第2页
第2页 / 共9页
2020年秋北师大版七年级上数学期中复习试卷(含答案解析)_第3页
第3页 / 共9页
2020年秋北师大版七年级上数学期中复习试卷(含答案解析)_第4页
第4页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、 北师大版北师大版 2020 年七年级上册数学期中复习试卷年七年级上册数学期中复习试卷 范围:第 1-3 章内容 一选择题一选择题 1的倒数是( ) A5 B C5 D 2地球上的海洋面积约为 361000000km2,用科学记数法可表示为( ) A361106 km2 B36.1107 km2 C0.361109 km2 D3.61108 km2 3 如图是每个面上都有一个汉字的正方体的一种展开图, 那么在原正方体 “着” 相对的面上的汉字是 ( ) A冷 B静 C应 D考 4一袋大米的质量标识为“100.15 千克” ,则下列大米中质量合格的是( ) A9.80 千克 B10.16 千克

2、C9.90 千克 D10.21 千克 5若单项式2xm ny3 与5x6y2m+n是同类项,则这两个单项式的和是( ) A3x6y3 B7x12y6 C3x6y3 D7x6y3 6在式子 a2+2,ab2,8x,3 中,整式有( ) A6 个 B5 个 C4 个 D3 个 7代数式 2x2+x+9 的值是 8,则代数式 8x2+4x3 的值是( ) A1 B7 C1 D7 8已知|a2|+(b+3)20,则 ba的值是( ) A6 B6 C9 D9 9点 A 在数轴上距2 的点 3 个单位长度,且位于原点左侧,则点 A 所表示的是( ) A1 B5 C1 或5 D以上都不对 10下列说法中错误

3、的是( ) A数字 0 也是单项式 B是二次单项式 C的系数是 D单项式a 的系数与次数都是 1 11如果 a0,b0,a+b0,那么下列关系式中正确的是( ) Aabba Baabb Cbaba Dabba 12下列图形是将正三角形按一定规律排列,则第 5 个图形中所有正三角形的个数有( ) A482 B483 C484 D485 二填空题二填空题 13如果向东走 5m,记作+5m;那么向西走 10m,记作 m 14比较大小: (填“”或“” ) 15去括号:a(2b+c) 16如果对于任何非零有理数 a,b 定义一种新的运算“”如下:ab,则42 的值为 17已知 x,y 互为相反数,m,

4、n 互为倒数,且有|a|7,a2(x+y+mn)a(nm)2019 18如图,在数轴上原点为 O,点 P 表示的数为 30,点 Q 表示的数为 120,甲、乙两只小虫分别从 O、P 两点出发,沿直线匀速爬向点 Q,最终到达点 Q已知甲每分钟爬行 60 个单位长度,乙每分钟爬行 30 个单位长度,则在此过程中,甲、乙两只小虫相距 10 个单位长度时的爬行时间为 分钟 三解答题三解答题 19计算32+14|1|(0.5)2 20化简:4(a33b2)+(2b2+5a3) 21先化简,再求值;,其中 a5,b5 22 如图, 正方形 ABCD 的边长为 3cm, 以直线 AB 为轴, 将正方形旋转一

5、周, 所得几何体的表面积是多少? (结果保留 ) 23一只蚂蚁从某点 A 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程 记为负数,则爬行各段路程(单位:厘米)依次为:+2,3,+12,8,7,+16,12 (1)通过计算说明蚂蚁是否回到起点 A (2)如果蚂蚁爬行的速度为 0.5 厘米/秒,那么蚂蚁共爬行了多长时间 24如图,大小两个正方形的边长分别为 a、b (1)用含 a、b 的代数式表示阴影部分的面积 S; (2)如果 a8,b6,求阴影部分的面积 25观察下列等式, 将以上三个等式两边分别相加得: (1)猜想并写出: (2)直接写出下列各式的计算结果: ;

6、(3)探究并计算: 26如图,已知数轴上原点为 O,点 B 表示的数为2,A 在 B 的右边,且 A 与 B 的距离是 5,动点 P 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向右匀速运动,动点 Q 从点 A 出发,以每秒 4 个单位长度的 速度沿数轴向左匀速运动,若点 P、Q 同时出发,设运动时间为 t(t0)秒 (1)写出数轴上点 A 表示的数 ,点 P 表示的数 (用含 t 的代数式表示) ,点 Q 表示的数 (用含 t 的代数式表示) ; (2)问点 P 与点 Q 何时到点 O 距离相等? (3)若点 D 是数轴上一点,点 D 表示的数是 x,是否存在 x,使得|x3|+|x+

7、2|7?如果存在,直接写 出 x 的值:如果不存在,说明理由 参考答案参考答案 一选择题一选择题 1解:的倒数是5 故选:C 2解:361 000 0003.61108, 故选:D 3解:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应” 相对, “冷”与面“考”相对 故选:B 4解:100.159.85(千克) ,10+0.1510.15(千克) , 合格范围为:9.8510.15 千克, 故选:C 5解:单项式2xm ny3 与5x6y2m+n是同类项, , 则2x6y35x6y37x6y3, 故选:D 6解:在式子 a2+2,ab2,8x,3 中,整式

8、有:a2+2,ab2,8x,3 共 5 个 故选:B 7解:由题意得:2x2+x+98,即 2x2+x1, 则原式4(2x2+x)3437, 故选:B 8解:|a2|+(b+3)20, a2,b3 原式(3)29 故选:D 9解:235,2+31(舍去) 故选:B 10解:A、数字 0 也是单项式是正确的,故本选项不符合题意; B、是二次单项式是正确的,故本选项不符合题意; C、的系数是是正确的,故本选项不符合题意; D单项式a 的系数是1,原来的说法错误,符合题意 故选:D 11解:a0,b0 a0b0 a+b0 负数 a 的绝对值较大 abba 故选:D 12解:第一个图形正三角形的个数为

9、 5, 第二个图形正三角形的个数为 53+2232117, 第三个图形正三角形的个数为 173+2233153, 第四个图形正三角形的个数为 533+22341161, 第五个图形正三角形的个数为 1613+22351485 如果是第 n 个图,则有 23n1 个 故选:D 二填空题二填空题 13解:向东走 5m 记作+5m,那么向西走 10m 应记作10m; 故答案为:10 14解:, 故答案为: 15解:a(2b+c)a+2bc 故答案为:a+2bc 16解:根据题意:4211 故答案为:1 17解:x,y 互为相反数,m,n 互为倒数,且有|a|7, x+y0,mn1,a7, 当 a7

10、时, a2(x+y+mn)a(nm)2019497+143; 当 a7 时, a2(x+y+mn)a(nm)201949+7+157; 综上所述:a2(x+y+mn)a(nm)2019的值为 43 或 57 故答案为:43 或 57 18解:设在此过程中,甲、乙两只小虫相距 10 个单位长度时的爬行时间为 t 分钟,由题意得: 30+30t60t10, 解得 t; 或 60t(30+30t)10, 解得 t; 或 30t1203010, 解得 t 故在此过程中,甲、乙两只小虫相距 10 个单位长度时的爬行时间为或或分钟 故答案为:或或 三解答题三解答题 19解:原式9+9 20解:原式4a3+

11、12b22b2+5a3 a3+10b2 21解:原式a2+2ab+4b23ab3a2+ab4a2+4b2, 当 a5,b5 时,原式100+1000 22解:正方形 ABCD 以直线 AB 为轴,将正方形旋转一周可得圆柱体, 圆柱的高为 3cm,底面直径为 6cm, 所以圆柱体的表面积为:S侧+2S底面63+2936cm2 答:所得几何体的表面积是 36cm2 23解: (1)(+2)3+(+12)+(8)+(7)+(+16)+(12) , 3030, 0, 蚂蚁回到起点 A; (2) (2+3+12+8+7+16+12)0.5 600.5 120(秒) 答:蚂蚁共爬行了 120 秒 24解:

12、 (1)大小两个正方形的边长分别为 a、b, 阴影部分的面积为: Sa2+b2 ; (2)a8,b6, S 32+1824 26 25解: (1) (2)直接写出下列各式的计算结果: ; (3) (1+) 26解: (1)AB5,且点 A 在点 O 的右侧, 点 A 表示的数为 3 动点 P 从点 B 出发,以每秒 3 个单位长度的速度沿数轴向右匀速运动,动点 Q 从点 A 出发,以每秒 4 个单位长度的速度沿数轴向左匀速运动, 点 P 表示的数为(3t2) ,点 Q 表示的数为(4t+3) 故答案为:3; (3t2) ; (4t+3) (2)依题意,得:|3t2|4t+3|, 即 3t24t+3 或 3t24t3, 解得:t或 t1 答:当 t秒或 1 秒时,点 P 与点 Q 到点 O 距离相等 (3)当 x2 时,|x3|+|x+2|7,即 3xx27, 解得:x3; 当2x3 时,|x3|+|x+2|7,即 3x+x+257; 当 x3 时,|x3|+|x+2|7,即 x3+x+27, 解得:x4 答:存在 x3 或 x4,使得|x3|+|x+2|7

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 初中 > 初中数学 > 北师大版 > 七年级上册