1、九年级教学情况调研测试九年级教学情况调研测试数学试题数学试题 20206 注意事项:1本试卷共 6 页全卷满分 120 分考试时间为 120 分钟考生应将答案全部填写在答题卡相 应的位置上,写在本试卷上无效考试结束后,请将本试卷和答题卡一并交回考试时不允许使用计算器 2答题前,考生务必将自己的姓名、考试证号填写在试卷上,并填涂好答题卡上的考生信息 3作图必须用 2B 铅笔作答,并请加黑加粗,描写清楚 一、选择题(本大题共一、选择题(本大题共 8 小题,每小题小题,每小题 2 分,共分,共 16 分分,在每小题所给出的四个选项中,只有在每小题所给出的四个选项中,只有 一项是正确的)一项是正确的)
2、 18的相反数是( ) A8 B8 C 1 8 D 1 8 2用代数式表示:a与3和的2倍下列表示正确的是( ) A23a B23a C23a D23a 3有6个相同的立方体搭成的几何体如图所示,则它的主视图是( ) A B C D 4抛掷一枚质地均匀的硬币5000次,正面朝上的次数最有可能为( ) A1500 B2000 C2500 D3000 5下列选项中的图形,不属于中心对称图形的是( ) A等边三角形 B正方形 C正六边形 D圆 6已知反比例函数 8 y x ,下列结论:图象必经过2,4;图象在二,四象限内;y随x的增大 而增大;当1x时,则8y 其中错误的结论有( ) A3个 B2个
3、 C1个 D0个 7 若正比例函数ykx0k , 当x的值减小1,y的值就减小2, 则当x的值增加2时,y的值 ( ) A增加4 B减小4 C增加2 D减小2 8 在平面直角坐标系xOy中, 将横纵坐标之积为1的点称为 “好点” , 则函数3yx的图象上的 “好点” 共有( ) A1个 B2个 C3个 D4个 二、填空题(本大题共二、填空题(本大题共 10 小题,每小题小题,每小题 2 分,共分,共 20 分分不需写出解答过程,请把答案直接不需写出解答过程,请把答案直接 填写在答题卡相应位置上)填写在答题卡相应位置上) 916的平方根_ 10分解因式: 2 2aa_ 11已知点5,1P 到x轴
4、的距离是_ 122020年抗疫、 复工生产两不误,4月份, 我市轨道交通出口约7040万元, 同比增长56.7% 数据7040 万用科学记数法可表示为_ 13 如图, 在ABC中,DE是AC的垂直平分线, 且分别交BC,AC于点D和E,60B ,25C, 则BAD为_ 14如图,四边形ABCD内接于半径为4的O,45D,则AC _ 15已知扇形的圆心角为120,弧长为2,则它的半径为_ 16二次函数 2 21yxx在35x范围内的最小值为_ 17如图,将ABC沿直线折叠,折痕为EF使点C落在AB边中点M上,若8AB,10AC ,则 AEM的周长为_ 18 如图, 在平面直角坐标系xOy中, 已
5、知点1,0A,3,0B,C为平面内的动点, 且满足90ACB, D为直线yx上的动点,则线段CD长的最小值为_ 三、解答题(本大题共三、解答题(本大题共 10 小题,共小题,共 84 分分请在答题卡指定区域内作答,如无特殊说明,解请在答题卡指定区域内作答,如无特殊说明,解 答应写出文字说明、演算步骤或推理过程)答应写出文字说明、演算步骤或推理过程) 19计算(1) 1 0 1 9(1) 3 ; (2) 2 22 aabb abab 20解不等式组并求出它的整数解: 580 365 x xx 21如图,四边形ABCD是矩形,以点A为圆心、AD为半径画弧交BC于点EDFAE于F若E 恰好为BC的中
6、点 (1)BAE_; (2)DF平分AE吗?证明你的结论 22车间有20名工人,某一天他们生产的零件个数统计如下表 车间20名工人某一天生产的零件个数统计表 生产零件的个数(个) 9 10 11 12 13 15 16 19 20 工人人数(人) 1 1 6 4 2 2 2 1 1 (1)求这一天20名工人生产零件的平均个数 (2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施如果你是管理 者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”? 23我市实施城乡生活垃圾分类管理,推进生态文明建设为增强学生的环保意识,随机抽取8名学生,对他 们的垃圾分类
7、投放情况进行调查,这8名学生分别标记为A,B,C,D,E,F,G,H,其中“” 表示投放正确, “”表示投放错误,统计情况如下表 学生 垃圾类别 A B C D E F G H 厨余垃圾 可回收垃圾 有害垃圾 其他垃圾 (1)求8名学生中至少有三类垃圾投放正确的概率; (2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受 采访,试用标记的字母列举所有可能抽取的结果,并求出刚好抽到C、G两位学生的概率 24某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花50元,并且花费300元购买A商 品和花费100元购买B商品的数量相等求购买一个A商品和一
8、个B商品各需要多少元? 25如图,在直角坐标系中,正方形ABCD绕点0,6A旋转,当点B落在x轴上时,点C刚好落在反比 例函数 k y x 0,0kx的图像上已知 5 sin 5 OAB (1)求反比例函数的表达式; (2)反比例函数 k y x 的图像是否经过AD边的中点,并说明理由 26已知45MCN,点B在射线CM上,点A是射线CN上的一个动点(不与点C重合) 点B关于 CN的对称点为点D,连接AB、AD和CD,点F在直线BC上,且满足AFAD小明在探究图形 运动的过程中发现AFAB:始终成立 备用图 (1)如图,当090BAC时 求证:AFAB; 用等式表示线段CF、CD与CA之间的数
9、量关系,并证明; (2)当90135BAC时,直接用等式表示线段CF、CD与CA之间的数量关系是_ 27已知二次函数 2 6yaxbx的图像开口向下,与x轴交于点6,0A 和点2,0B,与y轴交于点 C,点P是该函数图像上的一个动点(不与点C重合) 图 1 图 2 (1)求二次函数的关系式; (2) 如图 1 当点P是该函数图像上一个动点且在线段AC的上方, 若PCA的面积为12, 求点P的坐标; (3)如图 2,该函数图像的顶点为D,在该函数图像上是否存在点E,使得2EABDAC ,若存在请 直接写出点E的坐标;若不存在请说明理由 28如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆
10、为该角的角内圆特别地,当这个圆 与角的至少一边相切时,称这个圆为该角的角内相切圆在平面直角坐标系xOy中,点E,F分别在x轴 的正半轴和y轴的正半轴上 (1)分别以点1,0A,1,1B,3,2C为圆心,1为半径作圆,得到A,B和C,其中是EOF 的角内圆的是_; (2) 如果以点,2D t为圆心, 以1为半径的D为EOF的角内圆, 且与一次函数图像yx有公共点, 求t的取值范围; (3)点M在第一象限内,如果存在一个半径为1且过点 2,2 3P的圆为EMO的角内相切圆,直接写 出EMO的取值范围 2020 年常州九年级二模数学试题参考答案年常州九年级二模数学试题参考答案 一、选择题(本题有一、
11、选择题(本题有 8 小题,每小题小题,每小题 2 分,共分,共 16 分)分) 1-5:BDCCA 6-8:BAC 二、填空题(每小题二、填空题(每小题 2 分,共分,共 20 分)分) 94 102a a 111 12 7 7.04 10 1370 144 2 153 164 1714 182 1 三、解答题(共三、解答题(共 84 分)分) 19 (1)原式3 1 3 5 (2) 2 22 () ()() aabbab ab abababab ab ab abab ab ab 20解不等式得:1.6x 解不等式得:3x 不等式组的解集为1.63x 不等式组的整数解为1、0、1、2、3 21
12、 (1)30 (2)DF平分AE证明(方法较多) 22 (1)这一天20名工人生产零件的平均个数为13个 (2)中位数为12(个) ,众数为11个 当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性; 当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性; 当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性; 定额为11个时,有利于提高大多数工人的积极性 23 (1)有12个等可能结果,选到至少有三类垃圾投放正确的结果有5个, 5 8 P (2)列表如下: A C F G A CA FA GA C AC FC GC F AF CF GF G
13、AG CG FG 有12个等可能结果,刚好抽到C、G的结果有2个, 21 126 P 刚好抽到C、G的概率为 1 6 24设买一个B商品为x元,则买一个A商品为50x元 则 300100 50xx 解方程,得25x 检验知25x是原方程的根 5075x 答:买一个A商品为需要75元,买一个B商品需要25元 25 (1) 5 sin 5 OAB, 1 tan 2 OAB tan3OBOAOAB 作CEx轴于E易得AOBBEC, 9,3C 反比例函数的表达式为 27 y x (2)AD边中点坐标为3,7.5 当3x 时,97.5y , 反比例函数图像不经过AD边的中点 26解: (1)点B关于CN
14、的对称点为点D, ABCADC, ABCADC,45ACBACD 90BCD AFAD,90FAD 在四边形AFCD中,360FADDBCDAFC, 180AFCADC 又180AFBAFC, AFBADCABC ABAF 过A作APAC交CB的延长线于P, APC是等腰直角三角形,90PAC,APAC, 90PAFFACDACFAC, PAFDAC, AFBADC, APFACDASA, PFCD, 在等腰直角三角形APC中,2PFCFPCAC, 2CD CFAC; (2)2CD CFAC 27 (1)函数的表达式为: 2 1 26 2 yxx ; (2)连接PO,设点P横坐标为m,根据题意得: 2 1111 626() 6126 6 2222 mmm 解之得, 1 2m , 2 4m 所以点P坐标为2,8或4,6; (3)点 1 39 , 28 E 或 757 , 28 28 (1)B,C; (2)当 1 D与y轴相切时,设切点为M,则 1 1MD ,可得 1 1t 当 2 D与yx相切时,设切点为H,连接 2 HD,设直线yx与直线2y 交于点K, 则 2 HKD,MOK都是等腰直角三角形, 2 1KHHD, 2 2KD, 2OMMK, 22 22MDMKKD 可得 2 22t ,可知,满足条件的t的取值范围是122t (3)6090EOM