2020年浙江省湖州市中考数学试卷(含详细解答)

上传人:hua****011 文档编号:146524 上传时间:2020-07-03 格式:DOC 页数:29 大小:511.50KB
下载 相关 举报
2020年浙江省湖州市中考数学试卷(含详细解答)_第1页
第1页 / 共29页
2020年浙江省湖州市中考数学试卷(含详细解答)_第2页
第2页 / 共29页
2020年浙江省湖州市中考数学试卷(含详细解答)_第3页
第3页 / 共29页
2020年浙江省湖州市中考数学试卷(含详细解答)_第4页
第4页 / 共29页
2020年浙江省湖州市中考数学试卷(含详细解答)_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、近几年来,我国经济规模不断扩大,综合国力显著增强2019 年我国国内生产总 值约 991000 亿元,则数 991000 用科学记数法可表示为( ) A991103 B99.1104 C9.91105 D9.91106 3 (3 分)已知某几何体的三视图如图所示,则该几何体可能是( ) A B C D 4 (3 分)如图,已知四边形 ABCD 内接于O,ABC70,则ADC 的度数是( ) A70 B110 C130 D140 5 (3 分)数据1,0,3,4,4 的平均数是( ) A4 B3 C2.5 D2 6 (3 分)已知关于 x 的一元二次方程 x2+bx10,则下列关于该方程根的判断

2、,正确的 是( ) A有两个不相等的实数根 B有两个相等的实数根 C没有实数根 第 2 页(共 29 页) D实数根的个数与实数 b 的取值有关 7 (3 分)四边形具有不稳定性,对于四条边长确定的四边形当内角度数发生变化时,其 形状也会随之改变如图,改变正方形 ABCD 的内角,正方形 ABCD 变为菱形 ABC D 若DAB30, 则菱形 ABCD的面积与正方形 ABCD 的面积之比是 ( ) A1 B C D 8 (3 分)已知在平面直角坐标系 xOy 中,直线 y2x+2 和直线 yx+2 分别交 x 轴于点 A 和点 B则下列直线中,与 x 轴的交点不在线段 AB 上的直线是( )

3、Ayx+2 Byx+2 Cy4x+2 Dyx+2 9 (3 分)如图,已知 OT 是 RtABO 斜边 AB 上的高线,AOBO以 O 为圆心,OT 为 半径的圆交 OA 于点 C,过点 C 作O 的切线 CD,交 AB 于点 D则下列结论中错误的 是( ) ADCDT BADDT CBDBO D2OC5AC 10 (3 分)七巧板是我国祖先的一项卓越创造,流行于世界各地由边长为 2 的正方形可 以制作一副中国七巧板或一副日本七巧板, 如图 1 所示 分别用这两副七巧板试拼如图 2 中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别 是( ) 第 3 页(共 29 页

4、) A1 和 1 B1 和 2 C2 和 1 D2 和 2 二、填空题(本题有二、填空题(本题有 6 小题,每小题小题,每小题 4 分,共分,共 24 分)分) 11 (4 分)计算:21 12 (4 分)化简: 13 (4 分)如图,已知 AB 是半圆 O 的直径,弦 CDAB,CD8,AB10,则 CD 与 AB 之间的距离是 14 (4 分)在一个布袋里放有 1 个白球和 2 个红球,它们除颜色外其余都相同,从布袋里 摸出 1 个球,记下颜色后放回,搅匀,再摸出 1 个球将 2 个红球分别记为红,红, 两次摸球的所有可能的结果如表所示, 第二次 第一次 白 红 红 白 白,白 白,红 白

5、,红 红 红,白 红,红 红,红 红 红,白 红,红 红,红 则两次摸出的球都是红球的概率是 15 (4 分)在每个小正方形的边长为 1 的网格图形中,每个小正方形的顶点称为格点,顶 点都是格点的三角形称为格点三角形如图,已知 RtABC 是 66 网格图形中的格点 三角形,则该图中所有与 RtABC 相似的格点三角形中面积最大的三角形的斜边长 是 16 (4 分)如图,已知在平面直角坐标系 xOy 中,RtOAB 的直角顶点 B 在 x 轴的正半轴 上,点 A 在第一象限,反比例函数 y(x0)的图象经过 OA 的中点 C交 AB 于点 第 4 页(共 29 页) D,连结 CD若ACD 的

6、面积是 2,则 k 的值是 三、解答题(本题有三、解答题(本题有 8 小题,共小题,共 66 分)分) 17 (6 分)计算:+|1| 18 (6 分)解不等式组 19 (6 分)有一种升降熨烫台如图 1 所示,其原理是通过改变两根支撑杆夹角的度数来调 整熨烫台的高度图 2 是这种升降熨烫台的平面示意图AB 和 CD 是两根相同长度的活 动支撑杆,点 O 是它们的连接点,OAOC,h(cm)表示熨烫台的高度 (1)如图 21若 ABCD110cm,AOC120,求 h 的值; (2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为 120cm 时,两根支撑杆的夹 角AOC 是 74(如图 22

7、) 求该熨烫台支撑杆 AB 的长度(结果精确到 1cm) (参考数据:sin370.6,cos370.8,sin530.8,cos530.6 ) 20 (8 分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基 本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并 将抽查结果绘制成如图统计图(不完整) 第 5 页(共 29 页) 请根据图中信息解答下列问题: (1)求被抽查的学生人数,并补全条形统计图; (温馨提示:请画在答题卷相对应的图 上) (2)求扇形统计图中表示“满意”的扇形的圆心角度数; (3)若该校共有 1000 名学生参与网上在线学习,

8、根据抽查结果,试估计该校对学习效 果的满意度是“非常满意”或“满意”的学生共有多少人? 21 (8 分)如图,已知ABC 是O 的内接三角形,AD 是O 的直径,连结 BD,BC 平分 ABD (1)求证:CADABC; (2)若 AD6,求的长 22 (10 分)某企业承接了 27000 件产品的生产任务,计划安排甲、乙两个车间的共 50 名 工人,合作生产 20 天完成已知甲、乙两个车间利用现有设备,工人的工作效率为:甲 车间每人每天生产 25 件,乙车间每人每天生产 30 件 (1)求甲、乙两个车间各有多少名工人参与生产? (2)为了提前完成生产任务,该企业设计了两种方案: 方案一 甲车

9、间租用先进生产设备,工人的工作效率可提高 20%,乙车间维持不变 方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同) ,甲车间维持不变 第 6 页(共 29 页) 设计的这两种方案,企业完成生产任务的时间相同 求乙车间需临时招聘的工人数; 若甲车间租用设备的租金每天 900 元,租用期间另需一次性支付运输等费用 1500 元; 乙车间需支付临时招聘的工人每人每天 200 元问:从新增加的费用考虑,应选择哪种 方案能更节省开支?请说明理由 23 (10 分)已知在ABC 中,ACBCm,D 是 AB 边上的一点,将B 沿着过点 D 的直 线折叠,使点 B 落在 AC 边的点 P 处(不与

10、点 A,C 重合) ,折痕交 BC 边于点 E (1)特例感知 如图 1,若C60,D 是 AB 的中点,求证:APAC; (2)变式求异 如图 2,若C90,m6,AD7,过点 D 作 DHAC 于点 H, 求 DH 和 AP 的长; (3)化归探究 如图 3,若 m10,AB12,且当 ADa 时,存在两次不同的折叠,使 点 B 落在 AC 边上两个不同的位置,请直接写出 a 的取值范围 24 (12 分)如图,已知在平面直角坐标系 xOy 中,抛物线 yx2+bx+c(c0)的顶点为 D,与 y 轴的交点为 C过点 C 的直线 CA 与抛物线交于另一点 A(点 A 在对称轴左侧) , 点

11、 B 在 AC 的延长线上,连结 OA,OB,DA 和 DB (1)如图 1,当 ACx 轴时, 已知点 A 的坐标是(2,1) ,求抛物线的解析式; 若四边形 AOBD 是平行四边形,求证:b24c (2)如图 2,若 b2,是否存在这样的点 A,使四边形 AOBD 是平行四边 形?若存在,求出点 A 的坐标;若不存在,请说明理由 第 7 页(共 29 页) 第 8 页(共 29 页) 2020 年浙江省湖州市中考数学试卷年浙江省湖州市中考数学试卷 参考答案与试题解析参考答案与试题解析 一、选择题(本题有一、选择题(本题有 10 小题,每小题小题,每小题 3 分,共分,共 30 分)下面每小

12、题给出的四个选项中,只分)下面每小题给出的四个选项中,只 有一个是正确的请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应有一个是正确的请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应 字母的方框涂黑,不字母的方框涂黑,不选、多选、错选均不给分选、多选、错选均不给分 1 (3 分)数 4 的算术平方根是( ) A2 B2 C2 D 【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由 此即可求出结果 【解答】解:2 的平方为 4, 4 的算术平方根为 2 故选:A 【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆 而

13、导致错误 2 (3 分)近几年来,我国经济规模不断扩大,综合国力显著增强2019 年我国国内生产总 值约 991000 亿元,则数 991000 用科学记数法可表示为( ) A991103 B99.1104 C9.91105 D9.91106 【分析】科学记数法的表示形式为 a10n的形式,其中 1|a|10,n 为整数确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相 同 【解答】解:将 991000 用科学记数法表示为:9.91105 故选:C 【点评】此题考查科学记数法的表示方法,表示时关键要正确确定 a 的值以及 n 的值 3 (3 分)已知

14、某几何体的三视图如图所示,则该几何体可能是( ) 第 9 页(共 29 页) A B C D 【分析】根据两个视图是长方形得出该几何体是锥体,再根据俯视图是圆,得出几何体 是圆锥 【解答】解:主视图和左视图是三角形, 几何体是锥体, 俯视图的大致轮廓是圆, 该几何体是圆锥 故选:A 【点评】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体, 锥体还是球体,由另一个视图确定其具体形状 4 (3 分)如图,已知四边形 ABCD 内接于O,ABC70,则ADC 的度数是( ) A70 B110 C130 D140 【分析】根据圆内接四边形的性质即可得到结论 【解答】解:四边形 AB

15、CD 内接于O,ABC70, ADC180ABC18070110, 故选:B 【点评】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键 5 (3 分)数据1,0,3,4,4 的平均数是( ) A4 B3 C2.5 D2 【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决 【解答】解: 2, 故选:D 【点评】本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法 6 (3 分)已知关于 x 的一元二次方程 x2+bx10,则下列关于该方程根的判断,正确的 第 10 页(共 29 页) 是( ) A有两个不相等的实数根 B有两个相等的实数根 C没有实数根

16、D实数根的个数与实数 b 的取值有关 【分析】先计算出判别式的值,再根据非负数的性质判断0,然后利用判别式的意义 对各选项进行判断 【解答】解:b24(1)b2+40, 方程有两个不相等的实数根 故选:A 【点评】本题考查了根的判别式:一元二次方程 ax2+bx+c0(a0)的根与b24ac 有如下关系:当0 时,方程有两个不相等的实数根;当0 时,方程有两个相等的 实数根;当0 时,方程无实数根 7 (3 分)四边形具有不稳定性,对于四条边长确定的四边形当内角度数发生变化时,其 形状也会随之改变如图,改变正方形 ABCD 的内角,正方形 ABCD 变为菱形 ABC D 若DAB30, 则菱形

17、 ABCD的面积与正方形 ABCD 的面积之比是 ( ) A1 B C D 【分析】根据 30角所对的直角边等于斜边的一半可知菱形 ABCD的高等于 AB 的 一半,再根据正方形的面积公式和平行四边形的面积公式即可得解 【解答】解:根据题意可知菱形 ABCD的高等于 AB 的一半, 菱形 ABCD的面积为,正方形 ABCD 的面积为 AB2 菱形 ABCD的面积与正方形 ABCD 的面积之比是 故选:B 【点评】本题主要考查了正方形与菱形的面积,熟知 30角所对的直角边等于斜边的一 半是解答本题的关键 第 11 页(共 29 页) 8 (3 分)已知在平面直角坐标系 xOy 中,直线 y2x+

18、2 和直线 yx+2 分别交 x 轴于点 A 和点 B则下列直线中,与 x 轴的交点不在线段 AB 上的直线是( ) Ayx+2 Byx+2 Cy4x+2 Dyx+2 【分析】 求得 A、 B 的坐标, 然后分别求得各个直线与 x 的交点, 进行比较即可得出结论 【解答】解:直线 y2x+2 和直线 yx+2 分别交 x 轴于点 A 和点 B A(1,0) ,B(3,0) A、yx+2 与 x 轴的交点为(2,0) ;故直线 yx+2 与 x 轴的交点在线段 AB 上; B、yx+2 与 x 轴的交点为(,0) ;故直线 yx+2 与 x 轴的交点在线段 AB 上; C、y4x+2 与 x 轴

19、的交点为(,0) ;故直线 y4x+2 与 x 轴的交点不在线段 AB 上; D、yx+2 与 x 轴的交点为(,0) ;故直线 yx+2 与 x 轴的交点在线段 AB 上; 故选:C 【点评】本题考查了一次函数图象上点的坐标特征,图象上的点的坐标适合解析式 9 (3 分)如图,已知 OT 是 RtABO 斜边 AB 上的高线,AOBO以 O 为圆心,OT 为 半径的圆交 OA 于点 C,过点 C 作O 的切线 CD,交 AB 于点 D则下列结论中错误的 是( ) ADCDT BADDT CBDBO D2OC5AC 【分析】如图,连接 OD想办法证明选项 A,B,C 正确即可解决问题 【解答】

20、解:如图,连接 OD 第 12 页(共 29 页) OT 是半径,OTAB, DT 是O 的切线, DC 是O 的切线, DCDT,故选项 A 正确, OAOB,AOB90, AB45, DC 是切线, CDOC, ACD90, AADC45, ACCDDT, ACCDDT,故选项 B 正确, ODOD,OCOT,DCDT, DOCDOT(SSS) , DOCDOT, OAOB,OTAB,AOB90, AOTBOT45, DOTDOC22.5, BODODB67.5, BOBD,故选项 C 正确, 故选:D 【点评】本题考查切线的判定和性质,等腰直角三角形的判定和性质,全等三角形的判 定和性质

21、等知识,解题的关键是熟练掌握基本知识,属于中考常考题型 10 (3 分)七巧板是我国祖先的一项卓越创造,流行于世界各地由边长为 2 的正方形可 以制作一副中国七巧板或一副日本七巧板, 如图 1 所示 分别用这两副七巧板试拼如图 2 中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别 第 13 页(共 29 页) 是( ) A1 和 1 B1 和 2 C2 和 1 D2 和 2 【分析】根据要求拼平行四边形矩形即可 【解答】解:中国七巧板和日本七巧板能拼成的个数都是 2,如图所示: 故选:D 【点评】本题考查七巧板,正方形的性质,平行四边形的性质,矩形的性质等知识,解

22、题的关键是理解题意,灵活运用所学知识解决问题 二、填空题(本题有二、填空题(本题有 6 小题,每小题小题,每小题 4 分,共分,共 24 分)分) 11 (4 分)计算:21 3 【分析】本题需先根据有理数的减法法则,判断出结果的符号,再把绝对值合并即可 【解答】解:21 3 故答案为:3 【点评】本题主要考查了有理数的减法,在解题时要注意结果的符号是本题的关键 12 (4 分)化简: 第 14 页(共 29 页) 【分析】直接将分母分解因式,进而化简得出答案 【解答】解: 故答案为: 【点评】此题主要考查了约分,正确分解因式是解题关键 13 (4 分)如图,已知 AB 是半圆 O 的直径,弦

23、 CDAB,CD8,AB10,则 CD 与 AB 之间的距离是 3 【分析】过点 O 作 OHCD 于 H,连接 OC,如图,根据垂径定理得到 CHDH4,再 利用勾股定理计算出 OH3,从而得到 CD 与 AB 之间的距离 【解答】解:过点 O 作 OHCD 于 H,连接 OC,如图,则 CHDHCD4, 在 RtOCH 中,OH3, 所以 CD 与 AB 之间的距离是 3 故答案为 3 【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 14 (4 分)在一个布袋里放有 1 个白球和 2 个红球,它们除颜色外其余都相同,从布袋里 摸出 1 个球,记下颜色后放回,搅

24、匀,再摸出 1 个球将 2 个红球分别记为红,红, 两次摸球的所有可能的结果如表所示, 第二次 第一次 白 红 红 白 白,白 白,红 白,红 红 红,白 红,红 红,红 第 15 页(共 29 页) 红 红,白 红,红 红,红 则两次摸出的球都是红球的概率是 【分析】根据图表可知共有 9 种等可能的结果,再找出两次摸出的球都是红球的情况数, 然后根据概率公式即可得出答案 【解答】解:根据图表给可知,共有 9 种等可能的结果,两次摸出的球都是红球的有 4 种, 则两次摸出的球都是红球的概率为; 故答案为: 【点评】此题考查的是列表法求概率用到的知识点为:概率所求情况数与总情况数 之比 15 (

25、4 分)在每个小正方形的边长为 1 的网格图形中,每个小正方形的顶点称为格点,顶 点都是格点的三角形称为格点三角形如图,已知 RtABC 是 66 网格图形中的格点 三角形,则该图中所有与 RtABC 相似的格点三角形中面积最大的三角形的斜边长是 5 【分析】根据 RtABC 的各边长得出与其相似的三角形的两直角边之比为 1:2,在 6 6 的网格图形中可得出与 RtABC 相似的三角形的短直角边长应小于 4,在图中尝试可 画出符合题意的最大三角形,从而其斜边长可得 【解答】解:在 RtABC 中,AC1,BC2, AB,AC:BC1:2, 与 RtABC 相似的格点三角形的两直角边的比值为

26、1:2, 第 16 页(共 29 页) 若该三角形最短边长为 4, 则另一直角边长为 8, 但在 66 网格图形中, 最长线段为 6, 但此时画出的直角三角形为等腰直角三角形, 从而画不出端点都在格点且长为 8 的线段, 故最短直角边长应小于 4,在图中尝试,可画出 DE,EF2,DF5的三 角形, , ABCDEF, DEFC90, 此时DEF 的面积为:2210,DEF 为面积最大的三角形,其斜边长 为:5 故答案为:5 【点评】本题考查了相似三角形的判定,明确相似三角形的判定定理并数形结合是解题 的关键 16 (4 分)如图,已知在平面直角坐标系 xOy 中,RtOAB 的直角顶点 B

27、在 x 轴的正半轴 上,点 A 在第一象限,反比例函数 y(x0)的图象经过 OA 的中点 C交 AB 于点 D,连结 CD若ACD 的面积是 2,则 k 的值是 【分析】作辅助线,构建直角三角形,利用反比例函数 k 的几何意义得到 SOCESOBD k,根据 OA 的中点 C,利用OCEOAB 得到面积比为 1:4,代入可得结论 【解答】解:连接 OD,过 C 作 CEAB,交 x 轴于 E, 第 17 页(共 29 页) ABO90,反比例函数 y(x0)的图象经过 OA 的中点 C, SCOESBOD,SACDSOCD2, CEAB, OCEOAB, , 4SOCESOAB, 4k2+2

28、+k, k, 故答案为: 【点评】本题考查了反比例函数比例系数 k 的几何意义:在反比例函数 y图象中任取 一点,过这一个点向 x 轴和 y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|在反 比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角 形的面积是|k|,且保持不变也考查了相似三角形的判定与性质 三、解答题(本题三、解答题(本题有有 8 小题,共小题,共 66 分)分) 17 (6 分)计算:+|1| 【分析】首先利用二次根式的性质化简二次根式,利用绝对值的性质计算绝对值,然后 再算加减即可 【解答】解:原式2+131 【点评】此题主要考查了二次根式的加减

29、,关键是掌握计算顺序,掌握二次根式相加减, 先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方 法为系数相加减,根式不变 第 18 页(共 29 页) 18 (6 分)解不等式组 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可求解 【解答】解:, 解得 x1; 解得 x6 故不等式组的解集为 x6 【点评】考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中 间找;大大小小找不到 19 (6 分)有一种升降熨烫台如图 1 所示,其原理是通过改变两根支撑杆夹角的度数来调 整熨烫台的高度图 2 是这种升降熨烫台的平面示意图AB 和 C

30、D 是两根相同长度的活 动支撑杆,点 O 是它们的连接点,OAOC,h(cm)表示熨烫台的高度 (1)如图 21若 ABCD110cm,AOC120,求 h 的值; (2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为 120cm 时,两根支撑杆的夹 角AOC 是 74(如图 22) 求该熨烫台支撑杆 AB 的长度(结果精确到 1cm) (参考数据:sin370.6,cos370.8,sin530.8,cos530.6 ) 【分析】 (1)过点 B 作 BEAC 于 E,根据等腰三角形的性质得到OACOCA 30,根据三角函数的定义即可得到结论; (2)过点 B 作 BEAC 于 E,根据等

31、腰三角形的性质和三角函数的定义即可得到结论 【解答】解: (1)过点 B 作 BEAC 于 E, OAOC,AOC120, 第 19 页(共 29 页) OACOCA30, hBEABsin3011055; (2)过点 B 作 BEAC 于 E, OAOC,AOC74, OACOCA53, ABBEsin531200.8150(cm) , 即该熨烫台支撑杆 AB 的长度约为 150cm 【点评】本题考查了解直角三角形的应用,等腰三角形的性质,正确的识别图形是解题 的关键 20 (8 分)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基 本满意、不满意四个选项,随机抽查了部分

32、学生,要求每名学生都只选其中的一项,并 将抽查结果绘制成如图统计图(不完整) 请根据图中信息解答下列问题: (1)求被抽查的学生人数,并补全条形统计图; (温馨提示:请画在答题卷相对应的图 第 20 页(共 29 页) 上) (2)求扇形统计图中表示“满意”的扇形的圆心角度数; (3)若该校共有 1000 名学生参与网上在线学习,根据抽查结果,试估计该校对学习效 果的满意度是“非常满意”或“满意”的学生共有多少人? 【分析】 (1)从两个统计图中可知,在抽查人数中, “非常满意”的人数为 20 人,占调 查人数的 40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图; (2)

33、样本中“满意”占调查人数的,即 30%,因此相应的圆心角的度数为 360的 30%; (3)样本中“非常满意”或“满意”的占调查人数的(+) ,进而估计总体中“非 常满意”或“满意”的人数 【解答】解: (1)抽查的学生数:2040%50(人) , 抽查人数中“基本满意”人数:502015114(人) ,补全的条形统计图如图所示: (2)360108, 答:扇形统计图中表示“满意”的扇形的圆心角度数为 108; (3)1000(+)700(人) , 答:该校共有 1000 名学生中“非常满意”或“满意”的约有 700 人 【点评】考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和

34、数量 之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法 21 (8 分)如图,已知ABC 是O 的内接三角形,AD 是O 的直径,连结 BD,BC 平分 ABD 第 21 页(共 29 页) (1)求证:CADABC; (2)若 AD6,求的长 【分析】 (1)由角平分线的性质和圆周角定理可得DBCABCCAD; (2)由圆周角定理可得,由弧长公式可求解 【解答】解: (1)BC 平分ABD, DBCABC, CADDBC, CADABC; (2)CADABC, , AD 是O 的直径,AD6, 的长6 【点评】本题考查了三角形的外接圆和外心,圆周角定理,弧长公式等知识,灵活运用

35、这些性质解决问题是本题的关键 22 (10 分)某企业承接了 27000 件产品的生产任务,计划安排甲、乙两个车间的共 50 名 工人,合作生产 20 天完成已知甲、乙两个车间利用现有设备,工人的工作效率为:甲 车间每人每天生产 25 件,乙车间每人每天生产 30 件 (1)求甲、乙两个车间各有多少名工人参与生产? (2)为了提前完成生产任务,该企业设计了两种方案: 方案一 甲车间租用先进生产设备,工人的工作效率可提高 20%,乙车间维持不变 方案二 乙车间再临时招聘若干名工人(工作效率与原工人相同) ,甲车间维持不变 设计的这两种方案,企业完成生产任务的时间相同 求乙车间需临时招聘的工人数;

36、 若甲车间租用设备的租金每天 900 元,租用期间另需一次性支付运输等费用 1500 元; 第 22 页(共 29 页) 乙车间需支付临时招聘的工人每人每天 200 元问:从新增加的费用考虑,应选择哪种 方案能更节省开支?请说明理由 【分析】 (1)设甲车间有 x 名工人参与生产,乙车间各有 y 名工人参与生产,由题意得 关于 x 和 y 的方程组,求解即可 (2)设方案二中乙车间需临时招聘 m 名工人,由题意,以企业完成生产任务的时间 为等量关系,列出关于 m 的分式方程,求解并检验即可;用生产任务数量 27000 除以 方案一中甲和乙完成的生产任务之和可得企业完成生产任务的时间,然后分别按

37、方案一 和方案二计算费用并比较大小即可 【解答】解: (1)设甲车间有 x 名工人参与生产,乙车间各有 y 名工人参与生产,由题 意得: , 解得 甲车间有 30 名工人参与生产,乙车间各有 20 名工人参与生产 (2)设方案二中乙车间需临时招聘 m 名工人,由题意得: , 解得 m5 经检验,m5 是原方程的解,且符合题意 乙车间需临时招聘 5 名工人 企业完成生产任务所需的时间为: 18(天) 选择方案一需增加的费用为 90018+150017700(元) 选择方案二需增加的费用为 51820018000(元) 1770018000, 选择方案一能更节省开支 【点评】本题考查了二元一次方程

38、组和分式方程在实际问题中的应用,理清题中的数量 关系是解题的关键 23 (10 分)已知在ABC 中,ACBCm,D 是 AB 边上的一点,将B 沿着过点 D 的直 线折叠,使点 B 落在 AC 边的点 P 处(不与点 A,C 重合) ,折痕交 BC 边于点 E 第 23 页(共 29 页) (1)特例感知 如图 1,若C60,D 是 AB 的中点,求证:APAC; (2)变式求异 如图 2,若C90,m6,AD7,过点 D 作 DHAC 于点 H, 求 DH 和 AP 的长; (3)化归探究 如图 3,若 m10,AB12,且当 ADa 时,存在两次不同的折叠,使 点 B 落在 AC 边上两

39、个不同的位置,请直接写出 a 的取值范围 【分析】 (1)证明ADP 是等边三角形即可解决问题 (2)分两种情形:情形一:当点 B 落在线段 CH 上的点 P1处时,如图 21 中情形二: 当点 B 落在线段 AH 上的点 P2处时,如图 22 中,分别求解即可 (3)如图 3 中,过点 C 作 CHAB 于 H,过点 D 作 DPAC 于 P求出 DPDB 时 AD 的值,结合图形即可判断 【解答】 (1)证明:ACBC,C60, ABC 是等边三角形, ACAB,A60, 由题意,得 DBDP,DADB, DADP, ADP 使得等边三角形, APADABAC (2)解:ACBC6,C90

40、, AB12, DHAC, DHBC, ADHABC, 第 24 页(共 29 页) , AD7, , DH, 将B 沿过点 D 的直线折叠, 情形一:当点 B 落在线段 CH 上的点 P1处时,如图 21 中, AB12, DP1DBABAD5, HP1, A1AH+HP14, 情形二:当点 B 落在线段 AH 上的点 P2处时,如图 22 中, 同法可证 HP2, AP2AHHP23, 综上所述,满足条件的 AP 的值为 4或 3 (3)如图 3 中,过点 C 作 CHAB 于 H,过点 D 作 DPAC 于 P 第 25 页(共 29 页) CACB,CHAB, AHHB6, CH8,

41、当 DBDP 时,设 BDPDx,则 AD12x, tanA, , x, ADABBD, 观察图形可知当 6a时,存在两次不同的折叠, 使点 B 落在 AC 边上两个不同的位 置 【点评】本题考查几何变换综合题,考查了等边三角形的判定和性质,解直角三角形, 相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会 利用参数构建方程解决问题,属于中考压轴题 24 (12 分)如图,已知在平面直角坐标系 xOy 中,抛物线 yx2+bx+c(c0)的顶点为 D,与 y 轴的交点为 C过点 C 的直线 CA 与抛物线交于另一点 A(点 A 在对称轴左侧) , 点 B 在 AC 的

42、延长线上,连结 OA,OB,DA 和 DB (1)如图 1,当 ACx 轴时, 已知点 A 的坐标是(2,1) ,求抛物线的解析式; 若四边形 AOBD 是平行四边形,求证:b24c (2)如图 2,若 b2,是否存在这样的点 A,使四边形 AOBD 是平行四边 形?若存在,求出点 A 的坐标;若不存在,请说明理由 第 26 页(共 29 页) 【分析】 (1)先确定出点 C 的坐标,再用待定系数法即可得出结论; 先确定出抛物线的顶点坐标,进而得出 DF,再判断出AFDBCO,得出 DFOC,即可得出结论; (2)先判断出抛物线的顶点坐标 D(1,c+1) ,设点 A(m,m22m+c) (m

43、0) , 判断出AFDBCO(AAS) ,得出 AFBC,DFOC,再判断出ANFAMC,得 出,进而求出 m 的值,得出点 A 的纵坐标为 cc,进而判断 出点 M 的坐标为(0,c) ,N(1,c) ,进而得出 CM, DN,FNc,进而求出 c,即可得出结论 【解答】解: (1)ACx 轴,点 A(2,1) , C(0,1) , 将点 A(2,1) ,C(0,1)代入抛物线解析式中,得, , 抛物线的解析式为 yx22x+1; 如图 1,过点 D 作 DEx 轴于 E,交 AB 于点 F, ACx 轴, EFOCc, 点 D 是抛物线的顶点坐标, D(,c+) , DFDEEFc+c,

44、第 27 页(共 29 页) 四边形 AOBD 是平行四边形, ADDO,ADOB, DAFOBC, AFDBCO90, AFDBCO(AAS) , DFOC, c, 即 b24c; (2)如图 2,b2 抛物线的解析式为 yx22x+c, 顶点坐标 D(1,c+1) , 假设存在这样的点 A 使四边形 AOBD 是平行四边形, 设点 A(m,m22m+c) (m0) , 过点 D 作 DEx 轴于点 E,交 AB 于 F, AFDEFCBCO, 四边形 AOBD 是平行四边形, ADBO,ADOB, DAFOBC, AFDBCO(AAS) , AFBC,DFOC, 过点 A 作 AMy 轴于 M,交 DE 于 N, DECO, ANFAMC, , AMm,ANAMNMm1, , , 第 28 页(共 29 页) 点 A 的纵坐标为()22()+ccc, AMx 轴, 点 M 的坐标为(0,c) ,N(1,c) , CMc(c), 点 D 的坐标为(1,c+1) , DN(c+1)(c), DFOCc, FNDNDFc, , , c, c, 点 A 纵坐标为, A(,) , 存在这样的点 A,使四边形

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 中考真题