1、2019-2020学年浙江省台州市温岭市七年级(上)期中数学试卷一选择题(本大题共10小题,每题3分,共30分)1(3分)如果“盈利5%”记作+5%,那么3%表示()A少赚3%B亏损3%C盈利3%D亏损3%2(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数从轻重的角度看,最接近标准的是()ABCD3(3分)2019年1月3日,经过26天的飞行,嫦娥4号月球探测器在月球背面的预定着陆区中顺利着陆,成为人类首颗成功软着陆月球背面的探测器地球与月球之间的平均距离大约为384000km,384000用科学记数法表示为()A3.84103B3.84104C3.841
2、05D3.841064(3分)下列各数中,互为相反数的是()A(4)和|4|B|2|和(+2)C(3)和|3|D12和15(3分)在1,+7.5,0,0.9,15中负分数共有()Al个B2个C3个D4个6(3分)下列说法正确的是()A单项式a的系数是0B单项式的系数和次数分别是3和2Cx22x+25是五次三项式D单项式3xy2z3的系数和次数分别是3和67(3分)已知a0,b0,|a|b|,那么下列关系正确的是()AbaabBbaabCababDabba8(3分)若96785p,则96784的值可表示为()Ap1Bp85Cp967Dp9(3分)当x4时,多项式ax7+bx5+cx33的值为4,
3、则当x4时,该多项式的值为()A4B3C2D答案不确定10(3分)将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示设右上角与左下角阴影部分的周长的差为l若知道l的值,则不需测量就能知道周长的正方形的标号为()ABCD二填空题(本大题有10小题,每小题3分,共30分)11(3分)0的相反数是 ;0.5的倒数是 ;x2+2x3的常数项是 12(3分)比较大小,用“或“表示: 13(3分)近似数8.28万的精确到 位14(3分)规定符号的意义为:ab
4、abab+1,那么25 15(3分)飞机顺风时速度为x千米/时,风速为y千米/时,则飞机逆风速度为 千米/时16(3分)已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则2mn+x 17(3分)如图,数轴上点A表示的数为a,化简:|a3|2|a+1| (用含a的代数式表示)18(3分)一个三位数为x,一个两位数为y,把这个三位数放在两位数的左边得到一个五位数M,把这个两位数放在三位数的左边又可以得到一个五位数N,则MN (结果用含x,y的式子表示)19(3分)在数学中,为了简便,记,1!1,2!21,3!321,n!n
5、(n1)(n2)321,则 20(3分)如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“”的个数为a1,第2幅图形中“”的个数为a2,第3幅图形中“”的个数为a3,以此类推,则的值为 三解答题(本大题共6小题,共60分)21(16分)计算(1)(14)5+(18)(34)(2)(3)(4)12018(5)2(5)|0.81|22(8分)化简:(1)2x23x+74x2+3x+1(2)2(8xyx2+y2)3(x22y2+8xy)23(6分)先化简,再求值:2(a2b+ab2)3(a2b1)2ab24,其中a2019,b24(10分)
6、七年级开展演讲比赛,学校决定购买一些笔记本和钢笔作为奖品现有甲、乙两家商店出售两种同样品牌的笔记本和钢笔他们的定价相同:笔记本定价为每本20元,钢笔每支定价5元,但是他们的优惠方案不同,甲店每买一本笔记本赠一支钢笔;乙店全部按定价的9折优惠已知七年级需笔记本20本,钢笔X支(不小于20支)问:(1)在甲店购买需付款 元?在乙店购买需付款 元(用x的代数式表示)?(2)若x30,通过计算说明此时到哪家商店购买较为合算?(3)当x40时,如何购买最省钱?试写出你的购买方法,并算出此时需要付款多少元?25(8分)定义:如果10bn,那么称b为n的劳格数,记为bd(n)(1
7、)根据劳格数的定义,可知:d(10)1,d(102)2那么:d(103) (2)劳格数有如下运算性质:若m,n为正数,则d(mn)d(m)+d(n);d()d(m)d(n)若d(3)0.48,d(2)0.3,根据运算性质,填空:d(6) ,则d() ,d() 26(12分)【背景知识】数轴是初中数学的一个重要工具利用数轴可以将数与形完美的结合研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB|ab|,若ab,则可简化为ABab;线段AB的中点M表示的数为【问题情境】已知数轴上有A、B两点,分别表
8、示的数为10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动设运动时间为t秒(t0)【综合运用】(1)运动开始前,A、B两点的距离为 ;线段AB的中点M所表示的数 (2)点A运动t秒后所在位置的点表示的数为 ;点B运动t秒后所在位置的点表示的数为 ;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式运动,直接写出中点M的运动方向和运动速度2019-2020学年浙江省台州市温岭市七年级(上)期中数学试卷参考答案与试题解析一选择题(本大题共10小题,每
9、题3分,共30分)1(3分)如果“盈利5%”记作+5%,那么3%表示()A少赚3%B亏损3%C盈利3%D亏损3%【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答【解答】解:“盈利5%”记作+5%,3%表示表示亏损3%故选:D【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示2(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数从轻重的角度看,最接近标准的是()ABCD【分析】检测质量时,与标准质量偏差越小,合格的程度就越高比
10、较与标准质量的差的绝对值即可【解答】解:|+0.6|0.6,|0.2|0.2,|0.5|0.5,|+0.3|0.3而0.20.30.50.6B球与标准质量偏差最小故选:B【点评】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键3(3分)2019年1月3日,经过26天的飞行,嫦娥4号月球探测器在月球背面的预定着陆区中顺利着陆,成为人类首颗成功软着陆月球背面的探测器地球与月球之间的平均距离大约为384000km,384000用科学记数法表示为()A3.84103B3.84104C3.84105D3.84106【分析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n
11、为整数,据此判断即可【解答】解:3840003.84105故选:C【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a10n,其中1|a|10,确定a与n的值是解题的关键4(3分)下列各数中,互为相反数的是()A(4)和|4|B|2|和(+2)C(3)和|3|D12和1【分析】根据只有符号不同的两个数互为相反数,可得答案【解答】解:A、(4)4,|4|4,(4)|4|;B、|2|2,(+2)2,|2|(+2);C、(3)3,|3|3,(3)和|3|互为相反数;D、121;故选:C【点评】本题考查了绝对值和相反数熟练运用相反数和绝对值的意义进行化简是解决本题的关键5(3分)在1,+7.5
12、,0,0.9,15中负分数共有()Al个B2个C3个D4个【分析】根据负数的定义先选出负数,再选出分数即可【解答】解:负分数是,0.9,共2个故选:B【点评】本题考查了对有理数的理解和运用,能理解分数的定义是解此题的关键6(3分)下列说法正确的是()A单项式a的系数是0B单项式的系数和次数分别是3和2Cx22x+25是五次三项式D单项式3xy2z3的系数和次数分别是3和6【分析】分别利用单项式以及多项式的有关定义进而分别判断得出答案【解答】解:A、单项式a的系数是1,故此选项错误;B、单项式的系数是:,次数是:2,故此选项错误;C、x22x+25是二次三项式,故此选项错误;D、单项式3xy2z
13、3的系数和次数分别是3和6,正确故选:D【点评】此题主要考查了多项式以及单项式,正确把握相关定义是解题关键7(3分)已知a0,b0,|a|b|,那么下列关系正确的是()AbaabBbaabCababDabba【分析】根据:a0,b0,|a|b|,可得:a0,b0,ab,据此判断出a、a、b、b的大小关系即可【解答】解:a0,b0,|a|b|,a0,b0,ab,baab故选:A【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小8(3分)若96785p,则96784的值可表示为()Ap1Bp8
14、5Cp967Dp【分析】原式变形后,将已知等式代入即可得到结果【解答】解:96885p,96784967(851)96785967p967,故选:C【点评】本题主要考查有理数的乘法,解题的关键是熟练掌握有理数乘法分配律的运用9(3分)当x4时,多项式ax7+bx5+cx33的值为4,则当x4时,该多项式的值为()A4B3C2D答案不确定【分析】首先把x4,代入多项式ax7+bx5+cx33整理成关于a、b、c的等式,再把x4代入,观察两个式子的联系,进一步求得数值即可【解答】解:当x4时,ax7+bx5+cx3316384a+1024b+64c34,所以16384a+1024b+64c1,当x
15、4时,ax7+bx5+cx3316384a1024b64c3(16384a+1024b+64c)3132故选:C【点评】此题考查代数式求值,注意代入数值的特点,发现前后式子的联系,整体代入解决问题10(3分)将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示设右上角与左下角阴影部分的周长的差为l若知道l的值,则不需测量就能知道周长的正方形的标号为()ABCD【分析】设、四个正方形的边长分别为a、b、c、d,用a、b、c、d表示出右上角、左下角阴影部分的周长,利用整式的加减混合运算法则计算,得到答案【解答】解:设、四
16、个正方形的边长分别为a、b、c、d,由题意得,(a+dbc+b+a+db+bc+c+c)(ad+ad+d+d)l,整理得,2dl,则知道l的值,则不需测量就能知道正方形的周长,故选:D【点评】本题考查的是整式加减运算的应用,根据图形正确表示出右上角、左下角阴影部分的周长是解题的关键二填空题(本大题有10小题,每小题3分,共30分)11(3分)0的相反数是0;0.5的倒数是2;x2+2x3的常数项是3【分析】根据相反数、倒数的定义,以及多项式的概念即可求出答案【解答】解:故答案为:0,2,3【点评】本题考查有理数与多项式,解题的关键是正确理解相关概念,本题属于基础题型12(3分)比较大小,用“或
17、“表示:【分析】两个负数比较大小,绝对值大的反而小【解答】解:,故答案为:【点评】本题主要考查了有理数大小的比较,解题时注意:正数都大于0,负数都小于0,正数大于一切负数两个负数比较大小,绝对值大的反而小在数轴上右边的点表示的数大于左边的点表示的数13(3分)近似数8.28万的精确到百位【分析】近似数精确到哪一位,应当看末位数字实际在哪一位【解答】解:近似数8.28万的精确到百位,故答案为:百【点评】本题主要考查近似数和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错14(3分)规定符号的意义为:ababab+1,那么2512【分析】直接根据
18、新运算的规则进行计算即可【解答】解:由题意,ababab+1得:2525(2)5+112故填12【点评】解答本题的关键是弄清符号的运算规则15(3分)飞机顺风时速度为x千米/时,风速为y千米/时,则飞机逆风速度为(x2y)千米/时【分析】根据题意,可得飞机在无风时的速度为xy,从而可以得到飞机逆风的速度为xyy,本题得以解决【解答】解:飞机顺风时速度为x千米/时,风速为y千米/时,则飞机逆风速度为:xyy(x2y)(千米/时),故答案为:(x2y)【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式16(3分)已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则2mn+x4
19、或0【分析】根据题意得a+b0,mn1,x2或x2,代入原式计算可得【解答】解:a、b互为相反数,m、n互为倒数,x的绝对值为2,a+b0,mn1,x2或x2,当x2时,原式21+024;当x2时,原式21+0(2)0综上所述,2mn+x4或0故答案为:4或0【点评】本题主要考查了有理数的混合运算,相反数、倒数、绝对值的性质及代数式求值的能力,根据题意得出a+b、mn、x的值是关键17(3分)如图,数轴上点A表示的数为a,化简:|a3|2|a+1|3a+1(用含a的代数式表示)【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果【解答】解:根据
20、数轴上点的位置得:0a3,a30,a+10,则原式3a2a23a+1,故答案为:3a+1【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键18(3分)一个三位数为x,一个两位数为y,把这个三位数放在两位数的左边得到一个五位数M,把这个两位数放在三位数的左边又可以得到一个五位数N,则MN99x999y(结果用含x,y的式子表示)【分析】由于一个两位数为y,一个三位数为x,若把这个三位数放在两位数的左边得到一个五位数M,由此得到M100x+y,又把这个两位数放在三位数的左边又可以得到一个五位数N,由此得到N1000y+x,然后就可以求出MN的值【解答】解:依题意得,M1
21、00x+y,N1000y+x,MN(100x+y)(1000y+x)99x999y故答案为:99x999y【点评】此题主要考查了列代数式,解决此类题目的关键是首先正确理解题意,然后根据题意列出代数式,同时计算时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点19(3分)在数学中,为了简便,记,1!1,2!21,3!321,n!n(n1)(n2)321,则0【分析】利用,和n!n(n1)(n2)321得到原式(1+2+3+2019)(1+2+3+2019+2020)+,然后进行有理数的混合运算即可【解答】解:(1+2+3+2019)(1+2+3+2019+2020)+2020+20
22、200故答案为0【点评】本题考查了规律型数字的变化类:认真观察、仔细思考题中的公式和定义,善用联想是解决这类问题的方法20(3分)如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形,第1幅图形中“”的个数为a1,第2幅图形中“”的个数为a2,第3幅图形中“”的个数为a3,以此类推,则的值为【分析】根据图形的变化先确定每幅图形的“”的个数从而得到一般性的规律,再进行分数的变式计算即可求解【解答】解:观察图形,得第1幅图形中有“”的个数为3个,即a1313第2幅图形中有“”的个数为8个,即a2824第3幅图形中有“”的个数为15个,即a31535第n(n为正整数)幅图形中有“”的个
23、数为n(n+2)个,即ann(n+2)第8幅图形中有“”的个数为80个,即a880810+(1+)(1+)故答案为【点评】本题考查了图形的变化规律,解决本题的关键是通过图形的变化寻找一般性的规律,同时需要注意需要分数的变形才能求值三解答题(本大题共6小题,共60分)21(16分)计算(1)(14)5+(18)(34)(2)(3)(4)12018(5)2(5)|0.81|【分析】(1)先化简,再计算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)原式利用除法法则变形,再利用乘法分配律计算即可求出值;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,
24、要先做绝对值内的运算【解答】解:(1)(14)5+(18)(34)1458+3427+347;(2)811;(3)(+)(36)(36)(36)+(36)9+2411;(4)12018(5)2(5)|0.81|125(5)0.20.20.20【点评】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化22(8分)化简:(1)2x23x+74x2+3x+1(2)2(8xyx2+y2)3(x22y2+8xy)【分析】(1)直接合并同类项进而
25、得出答案;(2)直接去括号进而合并同类项得出答案【解答】解:(1)2x23x+74x2+3x+1(24)x2+(33)x+82x2+8;(2)2(8xyx2+y2)3(x22y2+8xy)16xy2x2+2y23x2+6y224xy5x2+8y28xy【点评】此题主要考查了整式的加减,正确合并同类项是解题关键23(6分)先化简,再求值:2(a2b+ab2)3(a2b1)2ab24,其中a2019,b【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值【解答】解:原式2a2b+2ab23a2b+32ab24a2b1,当a2019,b时,原式201912020【点评】此题考查了整式的
26、加减化简求值,熟练掌握运算法则是解本题的关键24(10分)七年级开展演讲比赛,学校决定购买一些笔记本和钢笔作为奖品现有甲、乙两家商店出售两种同样品牌的笔记本和钢笔他们的定价相同:笔记本定价为每本20元,钢笔每支定价5元,但是他们的优惠方案不同,甲店每买一本笔记本赠一支钢笔;乙店全部按定价的9折优惠已知七年级需笔记本20本,钢笔X支(不小于20支)问:(1)在甲店购买需付款(5x+300)元?在乙店购买需付款(4.5x+360)元(用x的代数式表示)?(2)若x30,通过计算说明此时到哪家商店购买较为合算?(3)当x40时,如何购买最省钱?试写出你的购买方法,并算出此时需要付款多少元?【分析】(
27、1)写列出算式,再进行化简即可;(2)把x30代入代数式,求出即可;(3)在甲店购买20本笔记本与20支钢笔,在乙店购买20支钢笔,再求出即可【解答】解:(1)在甲店购买需付款为5(x20)+2020(5x+300)元,在乙店购买需付款为(5x+2020)0.9(4.5x+360)元,故答案为:(5x+300),(4.5x+360);(2)当x30时,在甲店购买需付款为530+300450(元),在乙店购买需付款为(4.530+360495(元),450495,在商店购买较为合算;(3)购买方案是:在甲店购买20本笔记本与20支钢笔,在乙店购买20支钢笔,此时所需付款金额为:甲:当x20时,5
28、x+300400;乙:2050.990;所以一共是400+90490(元)【点评】本题考查了求代数式的值和列代数式,能够正确列出代数式是解此题的关键25(8分)定义:如果10bn,那么称b为n的劳格数,记为bd(n)(1)根据劳格数的定义,可知:d(10)1,d(102)2那么:d(103)3(2)劳格数有如下运算性质:若m,n为正数,则d(mn)d(m)+d(n);d()d(m)d(n)若d(3)0.48,d(2)0.3,根据运算性质,填空:d(6)0.78,则d()0.18,d()0.36【分析】(1)根据劳格数的定义,可知:d(103)求得是10b103中的b值;(2)由劳格数的运算性质
29、可知,两数积的劳格数等于这两个数的劳格数的和;两数商的劳格数等于这两个数的劳格数的差,据此可街【解答】解:(1)根据劳格数的定义,可知:d(103)3;故答案为:3(2)由劳格数的运算性质:若d(3)0.48,d(2)0.3,则d(6)d(3)+d(2)0.48+0.30.78,则d()d(2)d(3)0.30.480.18,d()d(9)d(4)d(33)d(22)d(3)+d(3)d(2)d(2)0.48+0.480.30.30.36故答案为:0.78,0.18,0.36【点评】本题考查了定义新运算,读懂题中的定义及运算法则,是解题的关键26(12分)【背景知识】数轴是初中数学的一个重要工
30、具利用数轴可以将数与形完美的结合研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB|ab|,若ab,则可简化为ABab;线段AB的中点M表示的数为【问题情境】已知数轴上有A、B两点,分别表示的数为10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动设运动时间为t秒(t0)【综合运用】(1)运动开始前,A、B两点的距离为18;线段AB的中点M所表示的数1(2)点A运动t秒后所在位置的点表示的数为10+3t;点B运动t秒后所在位置的点表示的数为82t;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距
31、4个单位长度?(4)若A,B按上述方式运动,直接写出中点M的运动方向和运动速度【分析】(1)根据A,B两点之间的距离AB|ab|,若ab,则可简化为ABab及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数运动开始前B点表示的数点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程184或点A运动的路程+点B运动的路程18+4,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB的中
32、点表示的数为0列出方程,解方程即可得到中点M的运动方向和运动速度【解答】解:(1)运动开始前,A、B两点的距离为8(10)18;线段AB的中点M所表示的数为1;(2)点A运动t秒后所在位置的点表示的数为10+3t;点B运动t秒后所在位置的点表示的数为82t;(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度,根据题意得3x+2x184,解得 x2.8,3x+2x18+4,解得 x4.4答:A、B两点经过2.8或4.4秒会相距4个单位长度;(4)由题意得0,解得 t2答:经过2秒A,B两点的中点M会与原点重合M点的运动方向向右,运动速度为每秒个单位长度故答案为:18,1;10+3t,82t【点评】本题考查了一元一次方程的应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解