ImageVerifierCode 换一换
格式:PPT , 页数:33 ,大小:3.06MB ,
资源ID:9957      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-9957.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【人教版】2018年秋九年级数学上册:25.2.1运用直接列举或列表法求概率ppt课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【人教版】2018年秋九年级数学上册:25.2.1运用直接列举或列表法求概率ppt课件

1、25.2 用列举法求概率,第二十五章 概率初步,第1课时 运用直接列举或列表法求概率,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.知道什么时候采用“直接列举法”和“列表法” . 2.会正确“列表”表示出所有可能出现的结果.(难点) 3.知道如何利用“列表法”求随机事件的概率.(重点),导入新课,我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这是一个游戏双方获胜概率大小的问题.,导入新课,老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问,你们觉得这个游戏公平吗?,我们一起来做游戏,讲授新课,同时掷两枚硬币

2、,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;,探索交流,“掷两枚硬币”所有结果如下:,正正,正反,反正,反反,解:,(1)两枚硬币两面一样包括两面都是正面,两面都是反面,共两种情形;所以学生赢的概率是,(2)一枚硬币正面朝上,一枚硬币反面朝上,共有反正,正反两种情形;所以老师赢的概率是,P(学生赢)=P(老师赢).,这个游戏是公平的.,上述这种列举法我们称为直接列举法,即把事件可能出现的结果一一列出.,想一想 “同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?,开始,第一掷,第二掷,(正、正),(正、反),(反、正),(反、反)

3、,发现:,一样.,随机事件“同时”与“先后”的关系:“两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的.,归纳总结,互动探究,问题1 同时掷两枚硬币,试求下列事件的概率:(1)两枚两面一样;(2)一枚硬币正面朝上,一枚硬币反面朝上;,P(两面都一样)=,P(两面不一样)=,第1枚硬币,第 2 枚硬币,反,正,正,反,正,正,反,正,正,反,反,反,问题2 怎样列表格?,一个因素所包含的可能情况,另一个因素所包含的可能情况,两个因素所组合的所有可能情况,即n,列表法中表格构造特点:,典例精析,例1 同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别是1,2,6.试分别计算

4、如下各随机事件的概率. (1)抛出的点数之和等于8; (2)抛出的点数之和等于12.,分析:首先要弄清楚一共有多少个可能结果.第1枚骰子可能掷出1,2,6中的每一种情况,第2枚骰子也可能掷出1,2,6中的每一种情况.可以用“列表法”列出所有可能的结果如下:,第2枚 骰子,第1枚骰子,结果,1,2,3,4,5,6,1,2,3,4,5,6,(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,3),(3,4),(3,5),(3,6),(4,2)

5、,(5,2),(6,2),(4,3),(5,3),(6,3),(4,4),(5,4),(6,4),(4,5),(5,5),(6,5),(4,6),(5,6),(6,6),解:从上表可以看出,同时抛掷两枚骰子一次,所有可能出现的结果有36种.由于骰子是均匀的,所以每个结果出现的可能性相等.,(1)抛出点数之和等于8的结果有(2,6),(3,5),(4,4),(5,3)和(6,2)这5种,所以抛出的点数之和等于8的这个事件发生的概率为,(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点数之和等于12的这个事件发生的概率为,当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果

6、数目较多时,为不重不漏地列出所有可能结果,通常采用列表法.,归纳总结,例2: 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后放回袋中并搅匀,再从中任意摸出一个球,两次都摸出红球的概率是多少?,1,2,结果,第一次,第二次,解:利用表格列出所有可能的结果:,白,红1,红2,白,红1,红2,(白,白),(白,红1),(白,红2),(红1,白),(红1,红1),(红1,红2),(红2,白),(红2,红1),(红2,红2),变式:一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,记录下颜色后不再放回袋中,再

7、从中任意摸出一个球,两次都摸出红球的概率是多少?,解:利用表格列出所有可能的结果:,白,红1,红2,白,红1,红2,(白,红1),(白,红2),(红1,白),(红1,红2),(红2,白),(红2,红1),结果,第一次,第二次,例3.同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同 (2)两个骰子的点数之和是9 (3)至少有一个骰子的点数为2,解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。 (1)满足两个骰子的点数相同(记为事件A)的结果有6个,则P(A)= = (2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则P(B)= = (3

8、)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则P(C)=,当一次试验所有可能出现的结果较多时,用表格比较方便!,真知灼见源于实践,想一想:什么时候用“列表法”方便,什么时候用“树形图”方便?,当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法,当一次试验涉及3个因素或3个以上的因素时,列表法就不方便了,为不重复不遗漏地列出所有可能的结果,通常用树形图,例4 甲乙两人要去风景区游玩,仅直到每天开往风景区有3辆汽车,并且舒适程度分别为上等、中等、下等3种,当不知道怎样区分这些车,也不知道它们会以怎样的顺序开来.于是他们分别采用了不同的

9、乘车办法:甲乘第1辆开来的车.乙不乘第1辆车,并且仔细观察第2辆车的情况,如比第1辆车好,就乘第3辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒适度较好的车?,解:容易知道3辆汽车开来的先后顺序有如下6种可能情况:,(上中下),,(上下中),,(上下),,(中下上),,(下上中),,(下中上).,假定6种顺序出现的可能性相等, 在各种可能顺序之下,甲乙两人分别会乘坐的汽车列表如下:,上,下,上,中,中,上,中,上,下,上,下,中,甲乘到上等、中等、下等3种汽车的概率都是 ;,乙乘坐到上等汽车的概率是 ,乘坐到下等汽车的概率只有,答:乙的乘车办法有有利于乘上舒适度较好的车.,当堂练习,1.

10、小明与小红玩一次“石头、剪刀、布”游戏,则小明赢的概率是( ),2.某次考试中,每道单项选择题一般有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全对的概率是( ),C,D,A. B. C. D.,A. B. C. D.,3.如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌.,(1)摸出两张牌的数字之和为4的概念为多少?,(2)摸出为两张牌的数字相等的概率为多少?,3,2,1,3,2,1,(2)P(数字相等)=,4.在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的

11、数字的概率是多少?,解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等.满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则P(A)= =,4.在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第一次取出的数字能够整除第二次取出的数字的概率是多少?,课堂小结,列举法,关键,常用 方法,直接列举法,列表法,画树状图法,(下节课学习),适用对象,两个试验因素或分两步进行的试验.,基本步骤,列表; 确定m、n值 代入概率公式计算.,在于正确列举出试验结果的各种可能性.,确保试验中每种结果出现的可能性大小相等.,前提条件,见学练优本课时练习,课后作业,