1、新课标人教版八年级上期中测试数学试卷一精心选择,一锤定音(本大题共10个小题,每小题3分,共30分在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号12345678910答案1.下面四个手机应用图标中是轴对称图形的是2已知图中的两个三角形全等,则的大小为 A B C. D3.如图,三角形被木板遮住一部分,这个三角形是 A锐角三角形 B直角三角形 C钝角三角形 D.以上都有可能4.如图,ACB=90,CDAB,
2、垂足为D,下列结论错误的是A.图中有三个直角三角形 B. 1=2 C. 1和B都是A的余角 D.2=A5已知n边形从一个顶点出发可以作9条对角线,则n=A.9 B.10 C.11 D.126如图,在方格纸中,以AB为一边作ABP,使之与ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个 B.2个 C.3个 D.4个7如图,点O在ABC内,且到三边的距离相等,若A=60,则BOC的大小为A. B.
3、C. D.608如图,在RtABC中,BAC=90,ADBC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则C=2A.30 B. C.60 D.759如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米 B.150米 C.160米 D.240米10如图,在RtABC中,ACB=90,BAC的平分线交BC于D,过点C作CGAB于G
4、,交AD于E,过点D作DFAB于F.下列结论CED=;ADF=;CE=DF.正确的是A. B C D二细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是 12三角形三边长分别为3,7,则的取值范围是 13一个正多边形的内角和为540,则这个正多边形的每个外角的度数为 14如图,已知ABBD,ABDE,AB=ED。要说明AB
5、CEDC,若添加AC=EC可用 公理(或定理)判定全等。15如图ABC中,ADBC,AE平分BAC,B=60,BAC=84,则DAE= 16如图为6个连长相等的正方形的组织图形,则1+2+3= 17如图,已知ABC的周长是21,BO,CO平分ABC,ACB,ODBC于点D,且OD=3,则ABC的面积 18如图,在33的正方形网络中,已知两个小正方形被涂黑,再将图中其余几个小正方形任意涂黑
6、一个,使整个图案构成一个轴对称图形的方法有 种19如图,等边ABC的边长为1cm,D,E分别是AB,AC上的点,将ADE沿直线DE折叠,点A落在点A'处。且点A'在ABC外部,则阴影部分图形的周长为 cm.20.在ABC中,AC=BC,ACB=90,CE是过C点的一条直线,ADCE于D,BECE于E,若DE=6,AD=3,则BE= 三、用心做一做,显显自己的能力!(本大题共6小题,满分60分)21(本题满分10分)如图,点D在AB上,点E在AC
7、上,AB=AC,B=C.求证:BD=CE.22(本题满分8分)如图,已知A(1,2),B(3,1),C(4,3).(1)作ABC关于y轴的对称图形A1B1C1,写出点C关于y轴的对称点C1的坐标;(2)作ABC关于直线m(直线m上各点的纵坐标都为-1)的对称图形A2B2C2,写出点C关于直线m的对称点C2的坐标.23.(本题满分10分)如图,已知1=2=3,且BAC=70,DFE=50,求ABC的度数.24.(本题满分10分)在ABC中,AB边的垂直平分线l交BC于点D,AC边的垂直平分线l2交BC于点E,l与 l2相交于点O,连接AD,AE,ADE的为6cm.(1)求BC的长;(2)分别连接
8、OA,OB,OC,若OBC的周长为16cm,求OA的长.25.(本题满分10分)如图,线段AC、BD交于点M,过B、D两点分别作AC的垂线段BF、DE,AB=CD(1)若A=C,求证FM=EM;(2)若FM=EM,则A=C.是真命题吗?(直接判断,不必证明)26.(本题满分12分)如图a,在平面直角坐标系中,A、B坐标分别为(6,0),(0,6),P为线段AB上的一点.(1) 如图a,若=12,求P的坐标;(2)如图b,若P为AB的中点,点M,N分别是OA,OB边上的动点,点M从顶点A,点N从顶点O同时出发,且它们的速度都为1cm/s,则在M,N运动的过程中,线段PM,PN之间有何关系?并证明
9、:【版权所有:21教育】(3)如图c,若P为线段AB上异于A,B的任意一点,过B点作BDOP,交OP,OA分别于F,D两点,E为OA上一点,且PEA=BDO,试判断线段OD与AE的数量关系,并说明理由.参考答案一选择题题号12345678910答案BDDBDCBABA二填空题11三角形具有稳定性; 12 ; 1372; 14HL; 1512; 16135; 1731.5; 185; 193; 203或92三解答题21略(见教材P40例3)10分22解:(1)
10、所作图形如图所示:C1的坐标为(4,3);4分(2)所作图形如图所示:C2的坐标为(4,5)6分 8分23DEF是ACE的外角, DEF=3+CAE, 1=3,3分 DEF=1+CAE=70, EDF=180-DEF -DFE=180-70-50=60,6分 1=2,EDF=1+ABD, ABC=2+ABD=1+ABD=EDF=6010分24(1)l1,l2 分别是线段AB,AC 的垂直平分线, AD=BD,AE=CE,2分 AD+DE+AE=BD+DE+CE=BC, ADE的周长为6cm,即AD+DE+AE=6cm, BC=6cm 5分
11、 (2)l1,l2分别是线段AB,AC的垂直平分线,OA=OC=OB,7分 OBC的周长为16cm, 即OA+OC+OB=16cm, OA+OB=16-6=10(cm), OC=5cm, OA=OC=OB =5cm10分25(1)证明:BFAC,DEAC,AFB=CED,2分在ABF和CDE中, ,ABFCDE(AAS),BF=DE,444444分在BFM和DEM中,BFMDEM(AAS),FM=EM;7分(2)解:真命题;理由如下:10分BFAC,DEAC,BFM=DEM=90,在BFM和DEM中,BFMDEM(ASA),BF=DE,在RtABF和RtCDE中,Rt
12、ABFRtCDE(HL),A=C 26. (1) =12 , , P(4,2) 3分 (2)PMPN 且PMPN,5分证明如下:如图1,连接PO,在NOP和MAP中, NOPMAP, PN=PM且OPN=APM又APM+MPO=90 , OPN+MPO=90 ,即MPN=90 , PMPN,综上:PMPN 且PMPN8分 (3)OD=AE,理由:如图2,9分作AQAO 交OP延长线于Q,易知OBD=AOQ,在OBD和AOQ中, OBDAOQ, BDO=Q=PEA,OD=AQ,易证APEAPQ, AE=AQ=OD, OD=AE12分