ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:704.50KB ,
资源ID:96849      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-96849.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题02 突破两类解三角形问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(原卷版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题02 突破两类解三角形问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(原卷版)

1、一方法综述解三角形问题是高考高频考点,命题主要有两类,一是解三角形的“基本问题”-求角、求边、求面积;二是解三角形中的综合问题-最值与范围问题.对于第一类问题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意三者的关系.对于第二类问题,要注意运用三角形中的不等关系:(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少;(2)在三角形中,边角以及角的三角函数值存在等价关系:,其中由利用的是余弦函数单调性,而仅在一个三角形内

2、有效.来源:Zxxk.Com本专题举例说明解答两类解三角形问题的方法、技巧.二解题策略类型一 三角形中求边、求角、求面积问题【例1】【2018届河北省衡水金卷一模】已知的内角的对边分别为,且,点是的重心,且,则的外接圆的半径为( )来源:ZXXKA. 1 B. 2 C. 3 D. 4【指点迷津】1.解三角形问题中,边角的求解是所有问题的基本,通常有以下两个解题策略:(1)边角统一化:运用正弦定理和余弦定理化角、化边,通过代数恒等变换求解;(2)几何问题代数化:通过向量法、坐标法将问题代数化,借用函数与方程来求解,对于某些问题来说此法也是极为重要的2. 解三角形的常用方法:(1)直接法:观察题目

3、中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解【举一反三】【2018届山东省潍坊市高三二模】在中, , , 分别是角, , 的对边,且,则=( )A. B. C. D. 类型二 三角形中的最值、范围问题【例2】【2018届百校联盟TOP20高三四月联考全国一卷】已知四边形中,设与面积分别为,则的最大值为_.来源:ZXXK【例3】【2018年江苏卷】在中,角所对的边分别为,的平分线交于点D,且,则的最小值为_【指点迷津】三角形中的最值、范围的求法来源:来源:Z_X_X_K(1)目标函数法:根据已知和所求最值、范围,选取恰

4、当的变量,利用正弦定理与余弦定理建立所求的目标函数,然后根据目标函数解析式的结构特征求解最值、范围(2)数形结合法:借助图形的直观性,利用所学平面图形中的相关结论直接判断最值、范围(3)利用均值不等式求得最值【举一反三】1.【衡水金卷】2018届四省名校第三次大联考】如图,在中,已知,为上一点,且满足,若的面积为,则的最小值为( )A. B. C. D. 2.【衡水金卷信息卷三】已知的三边分别为,所对的角分别为,且满足,且的外接圆的面积为,则的最大值的取值范围为_三强化训练1.【2018届东莞市高三第二次考试】在中,若,则的取值范围为( )A. B. C. D. 2【2018届湖南省衡阳市高三

5、二模】在中,已知为的面积),若,则的取值范围是( )A. B. C. D. 3【2018届四川省绵阳市高三三诊】四边形中, , ,设、的面积分别为、,则当取最大值时, _4【2018届广东省肇庆市高三第三次模拟】已知的角对边分别为,若,且的面积为,则的最小值为_.5【2018届辽宁省辽南协作校高三下学期一模】设的内角所对的边分别为且+,则的范围是_6【2018届四川省攀枝花市高三第三次(4月)统考】已知锐角的内角的对边分别为,且,则的最大值为_7【2018届安徽省“皖南八校”高三第三次(4月)联考】四边形中,,当边 最短时,四边形的面积为_8.【2018届浙江省杭州市高三第二次检测】在ABC 中,角A,B,C 所对的边分别为a,b,c若对任意R,不等式恒成立,则的最大值为_9. 【2018届百校联盟高三TOP20四月联考全国一卷】如图,在中,分别为的中点,若,则_. 10【2018年辽宁省部分重点中学协作体高三模拟】在中,角所对的边分别为.若,若,则角的大小为_3