ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:1.16MB ,
资源ID:96199      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-96199.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题02 导数与零点个数高考数学压轴题典例剖析(解析版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题02 导数与零点个数高考数学压轴题典例剖析(解析版)

1、专题02 导数与零点个数导数与零点个数,对于考生来讲中等偏难,基本的思路是利用导数分析函数的单调性,确定函数的极值或最值,作出函数的大致图像,再数形结合可求得结果。【题型示例】1、设为实数,函数(1)求的极值点;(2)如果曲线与轴仅有一个交点,求实数的取值范围【答案】(1)的极大值点为,极小值点为(2)或2、已知函数.(1)求的极值;(2)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.【答案】(1)极大值,无极小值;(2).【解析】(1)的定义域为,令得,当时,是增函数;当时,是减函数,所以在处取得极大值,无极小值.(2)当时,即时,由(1)知在上是增函数,在上是减函数,来源:Z

2、xxk.Com所以,因为的图象与的图象在上有公共点,来源:所以,解得,又,所以.来源:Zxxk.Com当时,即时,在上是增函数,所以在上最大值为,所以原问题等价于,解得.又,所以此时无解.=网综上,实数的取值范围是.3、设函数(其中)()求函数的极值;()求函数在上的最小值;()若,判断函数零点个数【答案】(1)极小值,不存在极大值;(2)(3)1个【解析】(),由得,由得,在单调递增,在单调递减极小值,不存在极大值() 由()知,在单调递增,在单调递减来源:ZXXK当时,在单调递减,单调递增,当时,在单调递增,;()由题意求导得,由得或,由得所以在上单调递增,在上单调递减当时,故函数只有一个

3、零点4、已知函数.(I)若,求的极值;(II)若,函数有且只有一个零点,求实数的取值范围.【答案】(I)的极小值为;(II)或.【解析】(I)时,其中则得当时,单调递减,当时,单调递增,因而的极小值为;(II)若有且只有一个零点,即方程在上有且只有一个实数根,分离参数得,设,则,又设,而因而当时,当时,那么当时,单调递增,当时,单调递减,又时,且时从而或,即或时函数有且只有一个零点.【题型专练】1、已知函数.(1)当时,求的极值;(2)若函数有两个零点,求实数的取值范围.【答案】(1)有得极大值,无极小值;(2).2、设函数,.关于的方程在区间上有解,求的取值范围;【答案】的取值范围.【解析】

4、方程即为,令,则,当时,随变化情况如表:,当时,的取值范围.3、已知函数.(1)求函数的单调区间;(2)若当时(其中),不等式恒成立,求实数的取值范围;(3)若关于的方程在区间上恰好有两个相异的实根,求实数的取值范围.【答案】(1)的单调减区间为,增区间;(2);(3).【解析】,所以(1),令, 得:,所以的单调减区间为,增区间;(2)由(1)知, 得,函数在上是连续的,又所以,当时,的最大值为故时,若使恒成立,则(3)原问题可转化为:方程在区间上恰有两个相异实根.令,则,令,解得:.当时,在区间上单调递减,当时,在区间上单调递增.在和处连续,又且当时,的最大值是,的最小值是在区间上方程恰好

5、有两个相异的实根时,实数的取值范围是:4、设函数,其中为实数.(1)若在上是单调减函数, 且在上有最小值, 求的取值范围;(2)若在上是单调增函数, 试求的零点个数, 并证明你的结论.【答案】();()当或时,有个零点,当时,有个零点,证明见解析(2)在上恒成立, 则,故.若, 令得增区间为;令得减区间为,当时,;当时,;当时,当且仅当时取等号. 故:时,有个零点;当时,有个零点.5、已知函数在处的切线斜率为2.(1)求的单调区间和极值;(2)若在上无解,求的取值范围.【答案】(1)函数的单调递增区间为,单调递减区间为和.函数的极小值为,极大值为.(2)【解析】(1),令,解得或.当变化时,的变化情况如下表:函数的单调递增区间为,单调递减区间为和.函数的极小值为,极大值为.(2)令,在上无解,在上恒成立,,记,在上恒成立,在上单调递减,,若,则,单调递减,恒成立,若,则,存在,使得,当时,即,在上单调递增,,在上成立,与已知矛盾,故舍去,来源:Z&xx&k.Com综上可知,.9