ImageVerifierCode 换一换
格式:PPT , 页数:13 ,大小:493.50KB ,
资源ID:66997      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-66997.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【人教课标版】2020版中考数学总复习:第23课时《等腰三角形与直角三角形》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【人教课标版】2020版中考数学总复习:第23课时《等腰三角形与直角三角形》课件

1、第五章 三角形,第23讲 等腰三角形与直角三角形,1.如图,已知在ABC中,点D在BC上,ABADDC,B80,则C的度数为 ( ) A. 30 B. 40 C. 45 D. 60 2.一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 3.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是 ( ) A. 形状相同 B. 周长相等 C. 面积相等 D. 全等,B,A,C,4.(2017济宁市)如图,在RtABC中,ACB90,ACBC1,将RtABC绕点A逆时针旋转30后得到RtADE,点B经过的路径为 ,则图中阴影部分的面积是

2、 ( ) A. B. C. D. 5.(2017台州市)如图,已知等腰三角形ABC,ABAC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是 ( ) A. AEEC B. AEBE C. EBCBAC D. EBCABE,A,C,6.如图,在ABC中,ABAC,A40,点D在AC上,BDBC,则ABD的度数是_.7.如图,在RtABC中,D,E为斜边AB上的两个点,且BDBC,AEAC,则DCE_.8.等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为_.,63或27,45,30,9.(2018广东省)如图,已知等边三角形OA1B1,顶点A1在双曲

3、线 (x0)上,点B1的坐标为(2,0).过B1作B1A2OA1交双曲线于点A2,过A2作A2B2A1B1交x轴于点B2,得到第二个等边三角形B1A2B2;过B2作B2A3B1A2交双曲线于点A3,过A3作A3B3A2B2交x轴于点B3,得到第三个等边三角形B2A3B3.以此类推,则点B6的坐标为_.,(2,0),考点一 等腰三角形的性质 1.等腰三角形的性质定理及推论: (1)定理:等腰三角形的两个底角相等(简称“_”). (2)推论1:等腰三角形的顶角平分线、底边上的中线、底边上的高重合(简称“_”). (3)推论2:等边三角形的三个角都相等,并且每个角都等于_.,等边对等角,三线合一,6

4、0,2.等腰三角形的其他性质: (1)等腰直角三角形的两个底角都等于_. (2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). (3)等腰三角形的三边关系:设腰长为a,底边长为b,则 a. (4)等腰三角形的三角关系:设顶角为A,底角为B,C,则A1802B,BC .,45,考点二 等腰三角形的判定定理及推论 1.判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“_”).这个判定定理常用于证明同一个三角形中的边相等. 2.推论1:三个角都相等的三角形是等边三角形. 3.推论2:有一个角是60 的_是等边三角形.,等角对等边,等腰三角形,考点三

5、 直角三角形的性质 1.直角三角形的两个锐角互余.可表示为:C90,AB90. 2.在直角三角形中,30 角所对的直角边等于斜边的一半. 可表示为:C90,A30,BCAB. 3.直角三角形斜边上的中线_. 可表示为:ACB90,D为AB的中点,CDABBDAD. 4.勾股定理:直角三角形两直角边a,b的平方和等于_,即a2b2c2. 5.常用关系式:由三角形面积公式可得ABCDACBC(如右图).,等于斜边的一半,斜边c的平方,考点四 直角三角形的判定 1.有一个角是直角的三角形是直角三角形;有两个角_的三角形是直角三角形. 2.如果三角形一边上的中线等于这边的一半,那么这个三角形是_三角形

6、. 3.勾股定理的逆定理:如果三角形的三边长a,b,c满足_,那么这个三角形是直角三角形.,互余,直角,a2b2c2,【例题1 】如图,在等腰三角形ABC中,ABAC,AB的垂直平分线MN交AC于点D,连接BD.若DBC15,则A的度数是_.,50,考点:线段垂直平分线的性质;等腰三角形的性质.,分析:根据线段垂直平分线上的点到两端点的距离相等可得ADBD,根据等边对等角可得AABD,然后表示出ABC,再根据等腰三角形两底角相等可得CABC,然后根据三角形的内角和定理,列出方程求解即可.,变式:如图,在四边形ABCD中,ADBC,C90,E为CD上一点,分别以EA,EB为折痕将两个角(D,C)向内折叠,点C,D恰好落在AB边的点F处.若AD2,BC3,则EF的长为_.,