ImageVerifierCode 换一换
格式:PPT , 页数:35 ,大小:5.15MB ,
资源ID:56295      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-56295.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教B版高中数学必修二课件:1.2.2 空间中的平行关系 第1课时 平行直线)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教B版高中数学必修二课件:1.2.2 空间中的平行关系 第1课时 平行直线

1、第1课时 平行直线,第一章 1.2.2 空间中的平行关系,学习目标 1.掌握空间中两条直线的位置关系,理解空间平行性的传递性. 2.理解并掌握基本性质4及等角公理.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 基本性质4,1.文字表述:平行于同一条直线的两条直线互相 .这一性质叫做_.2.符号表达: .,平行,平行线的传递性,空间,ac,知识点二 等角定理,思考 观察图,在长方体ABCDABCD中,ADC与ADC,ADC与DAB的两边分别对应平行,这两组角的大小关系如何?,答案 从图中可以看出,ADCADC,ADCDAB180.,梳理 等角定理 如果一个角的两边与另一个角的两边

2、分别 ,并且 ,那么这两个角相等.,对应平行,方向相同,知识点三 空间四边形,顺次连接 的四点A,B,C,D所构成的图形,叫做空间四边形.这四个点中的各个点叫做空间四边形的 ;所连接的相邻顶点间的线段叫做空间四边形的 ;连接不相邻的顶点的线段叫做空间四边形的.空间四边形用表示顶点的四个字母表示.,不共面,顶点,边,对角线,思考辨析 判断正误 1.若ABAB,ACAC,则BACBAC.( ) 2.没有公共点的两条直线是异面直线.( ) 3.若a,b是两条直线,是两个平面,且a,b,则a,b是异面直线.( ),题型探究,例1 如图,在四棱锥PABCD中,底面ABCD是平行四边形,E,F,G,H分别

3、为PA,PB,PC,PD的中点,求证:四边形EFGH是平行四边形.,类型一 基本性质4的应用,解 在PAB中,因为E,F分别是PA,PB的中点,,因为四边形ABCD是平行四边形, 所以ABCD,ABCD. 所以EFGH,EFGH. 所以四边形EFGH是平行四边形.,解答,反思与感悟 证明两条直线平行的两种方法 (1)利用平行线的定义:证明两条直线在同一平面内且无公共点. (2)利用基本性质4:寻找第三条直线,然后证明这两条直线都与所找的第三条直线平行,根据基本性质4,显然这两条直线平行.若题设条件中含有中点,则常利用三角形的中位线性质证明直线平行.,跟踪训练1 如图所示,E,F分别是长方体A1

4、B1C1D1ABCD的棱A1A,C1C的中点. 求证:四边形B1EDF是平行四边形.,证明,证明 设Q是DD1的中点,连接EQ,QC1. E是AA1的中点,,四边形EQC1B1为平行四边形,,又Q,F是DD1,C1C的中点,,四边形B1EDF为平行四边形.,四边形QDFC1为平行四边形.,类型二 等角定理的应用,例2 如图,在正方体ABCDA1B1C1D1中,M,M1分别是棱AD和A1D1的中点. 求证:(1)四边形BB1M1M为平行四边形;,证明,证明 在正方形ADD1A1中,M,M1分别为AD,A1D1的中点,,四边形AMM1A1是平行四边形,,四边形BB1M1M为平行四边形.,(2)BM

5、CB1M1C1.,证明,证明 由(1)知四边形BB1M1M为平行四边形, B1M1BM. 同理可得四边形CC1M1M为平行四边形, C1M1CM. 由平面几何知识可知, BMC和B1M1C1都是锐角. BMCB1M1C1.,反思与感悟 有关证明角相等问题,一般采用下面三种途径 (1)利用等角定理及其推论. (2)利用三角形相似. (3)利用三角形全等.本例是通过第一种途径来实现的.,跟踪训练2 已知棱长为a的正方体ABCDA1B1C1D1中,M,N分别是棱CD,AD的中点.求证: (1)四边形MNA1C1是梯形;,证明,证明 如图,连接AC, 在ACD中, M,N分别是CD,AD的中点, MN

6、是ACD的中位线,,由正方体的性质,得ACA1C1,ACA1C1.,四边形MNA1C1是梯形.,(2)DNMD1A1C1.,证明,证明 由(1)可知MNA1C1,又NDA1D1, DNM与D1A1C1相等或互补. 而DNM与D1A1C1均是直角三角形的一个锐角, DNMD1A1C1.,证明,类型三 空间四边形的认识,(1)当时,四边形EFGH是平行四边形;,四边形EFGH是平行四边形.,又, EHGF,,(2)当时,四边形EFGH是梯形.,证明,证明 由(1)知EHGF,又, EHGF. 四边形EFGH是梯形.,反思与感悟 因空间图形往往包含平面图形,在解题时容易混淆,所以把相似的概念辨析一下

7、,区分异同,有利于解题时不出错,如本例中明确给出了“空间四边形ABCD”,不包含平面四边形,说明“A,B,C,D四点必不共面”,不能因直观图中AD与BC看似平行的关系认为它们是平行的.,跟踪训练3 已知空间四边形ABCD中,ABAC,BDBC,AE是ABC的边BC上的高,DF是BCD的边BC上的中线,判定AE与DF的位置关系.,解答,解 由已知,得E,F不重合. 设BCD所在平面为, 则DF,A,E,EDF, 所以AE与DF异面.,达标检测,答案,1.直线ab,直线b与c相交,则直线a,c一定不存在的位置关系是 A.相交 B.平行 C.异面 D.无法判断,1,2,3,4,5,解析,解析 如图,

8、a与c相交或异面.,2.下列四个结论中假命题的个数是 垂直于同一直线的两条直线互相平行; 平行于同一直线的两直线平行; 若直线a,b,c满足ab,bc,则ac; 若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线. A.1 B.2 C.3 D.4,1,2,3,4,5,答案,解析,1,2,3,4,5,解析 均为假命题.可举反例,如a、b、c三线两两垂直.如图甲时,c、d与异面直线l1、l2交于四个点,此时c、d异面;当点A在直线l1上运动(其余三点不动)时,会出现点A与B重合的情形,如图乙所示,此时c、d共面相交.,1,2,3,3.下列结论正确的是 A.若两个角相等,则这两个角

9、的两边分别平行 B.空间四边形的四个顶点可以在一个平面内 C.空间四边形的两条对角线可以相交 D.空间四边形的两条对角线不相交,4,5,答案,解析,解析 空间四边形的四个顶点不在同一平面上,所以它的对角线不相交,否则四个顶点共面,故选D.,1,2,3,4,5,4.下面三个命题,其中正确的个数是 三条相互平行的直线必共面; 两组对边分别相等的四边形是平行四边形; 若四边形有一组对角都是直角,则这个四边形是圆的内接四边形. A.1 B.2 C.3 D.0,解析,解析 空间中三条平行线不一定共面,故错; 当把正方形沿对角线折成空间四边形,这时满足两组对边分别相等,也满足有一组对角都是直角,故、都错,故选D.,答案,1,2,3,4,5,5.两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形 A.全等 B.不相似 C.仅有一个角相等 D.相似,解析,解析 由等角定理知,这两个三角形的三个角分别对应相等,故选D.,答案,1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.另外,我们解决空间有关线线问题时,不要忘了我们生活中的模型,比如说教室就是一个长方体模型,里面的线线关系非常丰富,我们要好好地利用它,它是我们培养空间想象能力的好工具.,规律与方法,3.注意:等角定理的逆命题不成立.,