ImageVerifierCode 换一换
格式:PPTX , 页数:38 ,大小:4.62MB ,
资源ID:55901      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-55901.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版高中数学必修二课件:1.7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北师大版高中数学必修二课件:1.7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积

1、7.2 棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积,第一章 7 简单几何体的面积和体积,学习目标 1.掌握柱体、锥体、台体的体积计算公式,会利用它们求有关几何体的体积. 2.掌握求几何体体积的基本技巧.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 柱、锥、台体的体积公式,Sh,(S上S下 )h,Sh,知识点二 柱体、锥体、台体的体积公式之间的关系,思考辨析 判断正误 1.锥体的体积等于底面面积与高之积.( ) 2.台体的体积可转化为两个锥体的体积之差.( ),题型探究,例1 如图是一个水平放置的正三棱柱ABCA1B1C1,D是棱BC的中点.正三棱柱的主视图如图,求正三棱柱ABCA

2、1B1C1的体积.,类型一 多面体的体积,解答,解 由主视图可知,在正三棱柱中,,反思与感悟 求几何体体积的四种常用方法 (1)公式法:规则几何体直接代入公式求解. (2)等积法:如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可. (3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱、三棱柱补成四棱柱等. (4)分割法:将几何体分割成易求解的几部分,分别求体积.,跟踪训练1 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为,解析,答案,解析 如图所示,在正方体ABCDA1B1C1D1中, 截去三棱锥A1AB1D1. 设正方体

3、的棱长为a,,类型二 旋转体的体积,例2 (1)一个几何体的三视图如图所示(单位:m),则该几何体的体积为_m3.,解析,答案,解析 由所给三视图可知,该几何体是由相同底面的两个圆锥和一个圆柱组成,底面半径为1 m,圆锥的高为1 m,圆柱的高为2 m,,(2)体积为52 cm3的圆台,一个底面面积是另一个底面面积的9倍,那么截得这个圆台的圆锥的体积为 A.54 cm3 B.54 cm3 C.58 cm3 D.58 cm3,解析 由底面面积之比为19知,体积之比为127. 截得的小圆锥与圆台体积比为126, 小圆锥的体积为2 cm3, 故原来圆锥的体积为54 cm3,故选A.,答案,解析,反思与

4、感悟 要充分利用旋转体的轴截面,将已知条件尽量归结到轴截面中求解,分析题中给出的数据,列出关系式后求出有关的量,再根据几何体的体积公式进行运算、解答. (1)求台体的体积,其关键在于求高,在圆台中,一般把高放在等腰梯形中求解. (2)“还台为锥”是求解台体的体积问题的重要思想,作出截面图,将空间问题平面化,是解决此类问题的关键.,跟踪训练2 设圆台的高为3,如图,在轴截面中母线AA1与底面直径AB的夹角为60,轴截面中的一条对角线垂直于腰,则圆台的体积为_.,21,答案,解析,解析 设上,下底面半径,母线长分别为r,R,l.作A1DAB于点D,则A1D3,A1AB60, 又BA1A90, BA

5、1D60,,21. 圆台的体积为21.,类型三 几何体体积的求法,命题角度1 等体积法 例3 如图,已知ABCDA1B1C1D1是棱长为a的正方体,E为AA1的中点,F为CC1上一点,求三棱锥A1D1EF的体积.,解答,解,又三棱锥FA1D1E的高为CDa,,反思与感悟 (1)三棱锥的每一个面都可当作底面来处理. (2)利用等体积法可求点到面的距离.,跟踪训练3 如图所示,正方体ABCDA1B1C1D1的棱长为1,在三棱锥A1ABD中,求A到平面A1BD的距离d.,解答,解 在三棱锥A1ABD中,AA1是三棱锥A1ABD的高,,命题角度2 割补法 例4 如图,在多面体ABCDEF中,已知面AB

6、CD是边长为4的正方形,EFAB,EF2,EF与平面AC的距离为3,求该多面体的体积.,解答,解 如图,连接EB,EC,AC. 四棱锥EABCD的体积VEABCD 42316. 因为AB2EF,EFAB, 所以SEAB2SBEF.所以该多面体的体积VVEABCDVFEBC16420.,反思与感悟 通过“割补法”解决空间几何体的体积问题,需要思路灵活,有充分的空间想象力,什么时候“割”,什么时候“补”,“割”时割成几个图形,割成什么图形,“补”时补上什么图形,都需要灵活的选择.,跟踪训练4 如图所示,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,求该几何体的体积

7、.,解答,解 用一个完全相同的几何体把题中几何体补成一个圆柱,如图所示,则圆柱的体积为22520,故所求几何体的体积为10.,达标检测,1.已知高为3的棱柱ABCA1B1C1的底面是边长为1的正三角形(如图),则三棱锥B1ABC的体积为,1,2,3,4,5,答案,解析,1,2,3,4,5,答案,解析,解析 设圆锥的底面半径为r,母线长为l,解得r4.,1,2,3,4,5,2,3,3.棱台的上、下底面面积分别是2,4,高为3,则该棱台的体积是 A.186 B.62 C.24 D.18,4,5,1,答案,解析,4.某几何体的三视图如图所示,其体积为_.,解析 由三视图可知该几何体是半个圆锥,,答案

8、,解析,2,3,4,5,1,5.如图是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降_cm.,2,3,4,5,1,0.6,答案,解析,2,3,4,5,1,解析 将铅锤取出后,水面下降部分实际是圆锥的体积. 设水面下降的高度为x cm,则得x0.6 cm.,1.柱体、锥体、台体的体积之间的内在关系为2.在三棱锥ABCD中,若求点A到平面BCD的距离h,可以先求VABCD,h .这种方法就是用等体积法求点到平面的距离,其中V一般用换 顶点法求解,即VABCDVBACDVCABDVDABC,求解的原则是V易求,且BCD的面积易求. 3.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.,规律与方法,