ImageVerifierCode 换一换
格式:PPTX , 页数:33 ,大小:957.95KB ,
资源ID:55764      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-55764.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(苏教版高中数学必修1课件:3.4.1 第1课时 函数的零点)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

苏教版高中数学必修1课件:3.4.1 第1课时 函数的零点

1、第1课时 函数的零点,第3章 3.4.1 函数与方程,1.理解函数零点的定义,会求函数的零点. 2.掌握函数零点的判定方法. 3.了解函数的零点与方程的根的联系.,学习目标,知识梳理 自主学习,题型探究 重点突破,当堂检测 自查自纠,栏目索引,知识梳理 自主学习,知识点一 函数的零点,函数yf(x)的零点就是方程f(x)0的 ,也就是函数yf(x)的图象与x轴的交点的 .,实数根,横坐标,思考 函数的零点是点吗?,答 函数yf(x)的图象与横轴的交点的横坐标称为这个函数的零点, 因此函数的零点不是点,是方程f(x)0的解, 即函数的零点是一个实数.,答案,知识点二 函数的零点、方程的根、函数图

2、象之间的关系,方程f(x)0有实数根函数yf(x)的图象与 有交点函数 yf(x) .,x轴,有零点,知识点三 函数零点的判定定理,若函数yf(x)在区间a,b上的图象是一条 的曲线,且 .则函数yf(x)在区间(a,b)上有零点.,不间断,f(a)f(b)0,答案,返回,思考 (1)若函数f(x)在(a,b)内有零点,则f(a)f(b)0. 如函数y(x1)2在(0,2)内有零点, 但f(0)f(2)0.,(2)若函数f(x)在a,b上有f(a)f(b)0,则f(x)在(a,b)上一定没有零点吗?,答 不一定, 如y(x1)2,在0,2上f(0)f(2)0, 但f(x)在(0,2)上有零点1

3、.,答案,题型探究 重点突破,解析答案,题型一 求函数的零点,例1 判断下列函数是否存在零点,如果存在,请求出. (1)f(x)x27x6;,解 解方程f(x)x27x60, 得x1或x6,,(2)f(x)1log2(x3);,解 解方程f(x)1log2(x3)0,得x1, 所以函数的零点是1.,所以函数的零点是1,6.,(3)f(x)2x13;,反思与感悟,解 解方程f(x)2x130,得xlog26, 所以函数的零点是log26.,解析答案,所以函数的零点为6.,反思与感悟,求函数零点的两种方法:(1)代数法:求方程f(x)0的实数根;(2)几何法:对于不能用求根公式的方程,可以将它与函

4、数yf(x)的图象联系起来,并利用函数的性质找出零点.,解析答案,跟踪训练1 函数yx1的零点是_.,解析 令yx10,得x1, 故函数yx1的零点为1.,1,解析答案,题型二 判断函数零点所在区间,例2 已知函数f(x)x3x1仅有一个正零点,则下列区间中包含f(x)零点的一个区间是_. (3,4); (2,3); (1,2); (0,1).,反思与感悟,解析 f(0)10,f(3)230,f(4)590. f(1)f(2)0)的区间根问题,例4 关于x的方程x22ax40的两根均大于1,求实数a的取值范围.,反思与感悟,解析答案,解 方法一 (应用求根公式),反思与感悟,解析答案,方法二

5、(应用根与系数的关系) 设x1,x2为方程x22ax40的两根, 则有x1x22a,x1x24. 要使原方程x22ax40的两根x1,x2均大于1,,反思与感悟,方法三 (应用二次函数的图象),反思与感悟,设f(x)x22ax4,图象如图所示.,在解决二次函数的零点分布问题时要结合草图考虑四个方面:与0的关系;对称轴与所给端点值的关系;端点的函数值与零的关系;开口方向.,反思与感悟,解析答案,跟踪训练4 已知函数f(x)ax22ax1有两个零点x1,x2,且x1(0,1), x2(4,2),求a的取值范围.,解 f(x)ax22ax1的图象是连续的且两点x1,x2满足x2(4,2), x1(0

6、,1).,数形结合思想,解决思想的方法,解析答案,例5 已知关于x的方程|x24x3|a0有三个不相等的实数根,则实数a的值是_.,解析 如图所示,由图象知直线y1与y|x24x3|的图象有三个交点,,则方程|x24x3|1有三个不相等的实数根, 因此a1.,1,反思与感悟,求解这类问题可先将原式变形为f(x)g(x),则方程f(x)g(x)的不同解的个数等于函数f(x)与g(x)图象交点的个数,分别画出两个函数的图象,利用数形结合的思想使问题得解.,反思与感悟,跟踪训练5 当m为何值时,方程x24|x|5m有4个互不相等的实数根?,解析答案,返回,解 令f(x)x24|x|5,作出其图象,,

7、由图象可知,当1m5时,方程x24|x|5m有4个互不相等的实数根,如图所示,,当堂检测,1,2,3,4,5,解析答案,1.函数y4x2的零点是_.,1,2,3,4,5,解析答案,2.对于函数f(x),若f(1)f(3)0,则下列说法正确的是_. 方程f(x)0一定有实数解; 方程f(x)0一定无实数解; 方程f(x)0一定有两实数解; 方程f(x)0可能无实数解.,解析 函数f(x)的图象在(1,3)上未必连续, 故尽管f(1)f(3)0,但未必函数yf(x)在(1,3)上有实数解.,1,2,3,4,5,解析答案,3.在下列区间中,函数f(x)ex4x3的零点所在的区间为_.,1,2,3,4

8、,5,解析答案,4.方程2xx20的解的个数是_.,解析 在同一坐标系中画出函数y2x及yx2的图象,可看出两图象有三个交点,故2xx20的解的个数为3.,3,1,2,3,4,5,解析答案,5.已知函数f(x)x2(a21)x(a2)的一个零点比0大,一个零点比0小, 则实数a的取值范围为_.,解析 由题意可知f(0)a20,解得a2.,(,2),课堂小结,1.在函数零点存在定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点. 2.方程f(x)g(x)的根是函数f(x)与g(x)的图象交点的横坐标,也是函数yf(x)g(x)的图象与x轴交点的横坐标. 3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.,返回,