ImageVerifierCode 换一换
格式:PPTX , 页数:37 ,大小:2.02MB ,
资源ID:55362      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-55362.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学必修三《3.1.3概率的基本性质》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学必修三《3.1.3概率的基本性质》课件

1、第三章 3.1 随机事件的概率,3.1.3 概率的基本性质,学习目标 1.了解互斥事件概率的加法公式; 2.理解事件的关系与运算; 3.会用对立事件的特征求概率.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 事件的关系,一粒骰子掷一次,记事件A出现的点数大于4,事件B出现的点数为5,则事件B发生时,事件A一定发生吗?,因为54,故B发生时A一定发生.,答案,梳理 一般地,对于事件A与事件B,如果事件 发生,则事件 一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作 (或AB).与集合类比,如图所示.,不可能事件记作,任何事件都包含不可能事件.如果事件A发生,

2、则事件B一定发生,反之也成立,(若 ,且 ),那么称事件A与事件B相等,记作AB.,A,B,BA,BA,AB,思考,知识点二 事件的运算,一粒骰子掷一次,记事件C出现的点数为偶数,事件D出现的点数小于3,当事件C,D都发生时,掷出的点数是多少?事件C,D至少有一个发生时呢?,事件C,D都发生,即掷出的点数为偶数且小于3,故此时掷出的点数为2,事件C,D至少有一个发生,掷出的点数可以是1,2,4,6.,答案,梳理 一般地,关于事件的运算,有下表:,事件A发生或事件,B发生,并事件,和事件,事件A发生且事件,B发生,交事件,积事件,AB,AB,AB,AB,思考,知识点三 互斥与对立的概念,一粒骰子

3、掷一次,事件E出现的点数为3,事件F出现的点数大于3,事件G出现的点数小于4,则EF是什么事件?EF呢?GF呢?GF呢?,EF不可能事件,EF出现的点数大于2,E,F互斥,但不对立; GF不可能事件,GF必然事件,G,F互斥,且对立.,答案,梳理 一般地,有下表:,不可能事件,不可能事件,必然事件,AB,思考,知识点四 概率的基本性质,概率的取值范围是什么?为什么?,概率的取值范围是01之间,即0P(A)1;由于事件的频数总是小于或等于试验的次数,所以频率在01之间,因而概率的取值范围也在01之间.,答案,梳理 概率的几个基本性质 (1)概率的取值范围为 . (2) 的概率为1, 的概率为0.

4、 (3)概率的加法公式:如果事件A与事件B互斥,则P(AB) . 特别地,若A与B为对立事件,则P(A) . P(AB) ,P(AB) .,0,1,必然事件,不可能事件,P(A)P(B),1P(B),1,0,题型探究,例1 在掷骰子的试验中,可以得到以下事件: A出现1点;B出现2点;C出现3点;D出现4点;E出现5点;F出现6点;G出现的点数不大于1;H出现的点数小于5;I出现奇数点;J出现偶数点.请根据这些事件,判断下列事件的关系: (1)B_H;(2)D_;(3)E_I;(4)A_G.,类型一 事件关系的判断,答案,解析,当事件B发生时,事件H必然发生,故BH;同理DJ,EI.易知事件A

5、与事件G相等,即AG.,(1)不可能事件记作,任何事件都包含不可能事件. (2)事件的包含关系与集合的包含关系相似,不可能事件与空集相似,学习时要注意类比记忆. (3)事件A也包含于事件A,即AA. (4)两个事件相等的实质就是两个事件为相同事件,相等的事件A、B总是同时发生或同时不发生.,反思与感悟,跟踪训练1 判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由. 从40张扑牌(红桃、黑桃、方块、梅花的牌面数字都是从1到10)中任意抽取1张. (1)“抽出红桃”与“抽出黑桃”;,解答,是互斥事件,不是对立事件. 理由如下:从40张扑克牌中任意抽取1张,“抽出红桃”和“抽出黑桃”

6、是不可能同时发生的,所以是互斥事件.由于还可能抽出方块或者梅花,因此不能保证其中必有一个发生,所以二者不是对立事件.,(2)“抽出红色牌”与“抽出黑色牌”;,解答,既是互斥事件,又是对立事件. 理由如下:从40张扑克牌中任意抽取1张,“抽出红色牌”与“抽出黑色牌”不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.,(3)“抽出的牌的牌面数字为5的倍数”与“抽出的牌的牌面数字大于9”.,解答,不是互斥事件,也不是对立事件. 理由如下:从40张扑克牌中任意抽取1张,“抽出的牌的牌面数字为5的倍数”与“抽出的牌的牌面数字大于9”这两个事件可能同时发生,如抽出的牌的牌面数字为10

7、,因此二者不是互斥事件,当然也不可能是对立事件.,例2 盒子里有6个红球,4个白球,现从中任取3个球,设事件A3个球中有1个红球2个白球,事件B3个球中有2个红球1个白球,事件C3个球中至少有1个红球,事件D3个球中既有红球又有白球. 求:(1)事件D与A,B是什么样的运算关系?,类型二 事件的运算,解答,对于事件D,可能的结果为1个红球,2个白球或2个红球,1个白球,故DAB.,(2)事件C与A的交事件是什么事件?,解答,对于事件C,可能的结果为1个红球,2个白球或2个红球,1个白球或3个均为红球,故CAA.,引申探究 本例中,若设事件E3个红球,事件F3个球中至少有一个白球,那么事件C与B

8、,E是什么运算关系?C与F的交事件是什么?,解答,由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故BC,EC,而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以CF1个红球2个白球,2个红球1个白球D.,(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算. (2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.,反思与感悟,跟踪训练2 掷一枚骰子,下列事件: A出现奇数点,B出现偶数点,C点数小于3,D点数大于2,E点数是3的

9、倍数. 求:(1)AB,BC.,解答,AB,BC出现2点.,(2)AB,BC.,解答,AB出现1,2,3,4,5或6点, BC出现1,2,4或6点,,解答,类型三 用互斥、对立事件求概率,解答,解答,(2)甲不输的概率.,(1)只有当A、B互斥时,公式P(AB)P(A)P(B)才成立;只有当A、B互为对立事件时,公式P(A)1P(B)才成立. (2)复杂的互斥事件概率的求法有两种:一是直接求解,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算;二是间接求解,先找出所求事件的对立事件,再用公式P(A)1P( )求解.,反思与感悟,跟踪训练3 从一箱产品中随机地抽

10、取一件,设事件A“抽到一等品”,事件B“抽到二等品”,事件C“抽到三等品”.已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为 A.0.20 B.0.39 C.0.35 D.0.90,答案,解析,抽到的不是一等品的对立事件是抽到一等品,而P(A)0.65, 抽到的不是一等品的概率是10.650.35.,当堂训练,1.从1,2,9中任取两数,其中: 恰有一个偶数和恰有一个奇数;至少有一个奇数和两个数都是奇数;至少有一个奇数和两个数都是偶数;至少有一个奇数和至少有一个偶数. 在上述各对事件中,是对立事件的是 A. B. C. D.,答案,解析,从1,2,9中任

11、取两数,包括一奇一偶、二奇、二偶,共三种互斥事件,所以只有中的两个事件才是对立事件.,2,3,4,5,1,2.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是 A.0.42 B.0.28 C.0.3 D.0.7,答案,解析,摸出黑球是摸出红球或摸出白球的对立事件, 摸出黑球的概率是10.420.280.3,故选C.,2,3,4,5,1,2,3,4,5,1,答案,解析,4.如图所示,靶子由一个中心圆面和两个同心圆环、构成,射手命中、的概率分别为0.35、0.30、0.25,则不命中靶的概率是_.,答案,解析,“射手

12、命中圆面”为事件A,“命中圆环”为事件B,“命中圆环”为事件C,“不中靶”为事件D,则A、B、C彼此互斥,故射手中靶的概率为P(ABC)P(A)P(B)P(C)0.350.300.250.90. 因为中靶和不中靶是对立事件,故不命中靶的概率为 P(D)1P(ABC)10.900.10.,2,3,4,5,1,0.10,2,3,4,5,1,5.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3、0.2、0.1、0.4. 求:(1)他乘火车或飞机去的概率;,设乘火车去开会为事件A,乘轮船去开会为事件B,乘汽车去开会为事件C,乘飞机去开会为事件D,它们彼此互斥. P(AD)P(A)P(D)

13、0.30.40.7.,解答,(2)他不乘轮船去的概率.,P1P(B)10.20.8.,解答,1.互斥事件和对立事件都是针对两个事件而言的,它们两者之间既有区别又有联系.在一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能两个都发生;而两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件都不发生.所以两个事件互斥,它们未必对立;反之两个事件对立,它们一定互斥. 2.互斥事件概率的加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率的加法公式P(AB)P(A)P(B).,规律与方法,3.求复杂事件的概率通常有两种方法: (1)将所求事件转化成彼此互斥事件的并事件; (2)先求其对立事件的概率,再求所求事件的概率.,本课结束,