专题 27 快速解决圆锥曲线的方程与性质问题一 【学习目标】1.掌握圆锥曲线的定义;2掌握焦点三角形的应用和几何意义;3.掌握圆锥曲线方程的求法;4.掌握直线与圆锥曲线的位置关系;5.熟练掌握定点、定值、最值和范围问题。一 【知识点总结】1.椭圆定义:平面内与两个定点 12,F的距离的和等于常数(大于 12,F之间的距离)的点的轨迹叫做椭圆,这两个定点 12,F叫做焦点,两焦点间的距离叫做焦距2椭圆的标准方程(1) ,焦点 ,其中 (2) ,焦点 ,其中3椭圆的几何性质以 为例(1)范围: (2)对称性:对称轴: x轴, y轴;对称中心: (0,)O(3)顶点:长轴端点: ,短轴端点: ;长轴长 12|Aa,短轴长12|Bb,焦距 12|Fc.(4)离心率 越大,椭圆越扁, e越小,椭圆越圆(5) ,abc的关系: 22ab.4双曲线的定义: 平面内与两个定点 12,F的距离的差的绝对值等于常数(小于 12,F之间的距离)的点的轨迹叫做双曲线,这两个定点 12,叫做焦点,两焦点间的距离叫做焦距5双曲线的标准方程(1) ,焦点 ,其中 (2) ,焦点 ,其中6双曲线的几何性质以 为例(1)范围: (2)对称性:对称轴: x轴, y轴;对称中心: (0,)O(3)顶点:实轴端点: ,虚轴端点: ;实轴长 12|Aa,虚轴长12|Bb,焦距 12|Fc. 故选 C