ImageVerifierCode 换一换
格式:PPTX , 页数:31 ,大小:650.32KB ,
资源ID:48677      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-48677.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版九年级下数学《1.3三角函数的计算》课件)为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

北师大版九年级下数学《1.3三角函数的计算》课件

1、1.3 三角函数的计算,导入新课,讲授新课,当堂练习,课堂小结,第一章直角三角形的边角关系,1.复习并巩固锐角三角函数的相关知识. 2.学会利用计算器求三角函数值并进行相关计算. (重点) 3.学会利用计算器根据三角函数值求锐角度数并计算.(难点),学习目标,导入新课,回顾与思考,30、45、60角的正弦值、余弦值和正切值如下表:,三角 函数,问题: 如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为=16,那么缆车垂直上升的距离是多少?(结果精确到0.01m),问题: 如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与

2、水平面的夹角为=16,那么缆车垂直上升的距离是多少?(结果精确到0.01m),在 RtABC中,ABC=90,,BC=ABsin=200sin16,你知道sin16是多少吗?,讲授新课,1.求sin18,第二步:输入角度值18,,屏幕显示结果sin18=0.309 016 994,(也有的计算器是先输入角度再按函数名称键).,2.求cos72,第二步:输入角度值72,,屏幕显示结果cos72=0.309 016 994,3.求 tan3036.,最后按等号,屏幕显示答案:0.591 398 351;,第二步:输入角度值30.6 (因为303630.6),屏幕显示答案:0.591 398 351

3、.,第一种方法:,第二种方法:, ,键,,例1:用计算器求下列各式的值(精确到0.0001): (1)sin47; (2)sin1230; (3)cos2518; (4)sin18cos55tan59.,解:根据题意用计算器求出: (1)sin470.7314; (2)sin12300.2164; (3)cos25180.9041; (4)sin18cos55tan590.7817.,典例精析,问题: 如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为=16,那么缆车垂直上升的距离是多少?(结果精确到0.01m),在 RtABC中,ABC=90,,B

4、C=ABsin=200sin16,你知道sin16是多少吗?,BC=200sin1655.12(米),问题: 在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面的夹角为=42,由此你还能计算吗,在 RtBDE中,BED=90,,DE=BDsin=200sin42,DE133.82(米),E,为了方便行人推自行车过某天桥,市政府在10m高的天桥两端修建了40m长的斜道(如图).这条斜道的倾斜角是多少?,为了方便行人推自行车过某天桥,市政府在10m高的天桥两端修建了40m长的斜道(如图).这条斜道的倾斜角是多少?,在RtABC中,sinA=,那

5、么A是多少度呢?,已知sinA=0.501 8,用计算器求锐角A可以按照下面方法操作:,还以以利用 键,进一步得到 A3078.97 “,第二步:然后输入函数值0. 501 8,屏幕显示答案: 30.119 158 67,操作演示,例2:已知下列锐角三角函数值,用计算器求锐角A,B的度数(结果精确到0.1): (1)sinA0.7,sinB0.01; (2)cosA0.15,cosB0.8; (3)tanA2.4,tanB0.5.,解:(1)由sinA0.7,得A44.4;由sinB0.01,得B0.6; (2)由cosA0.15,得A81.4;由cosB0.8,得B36.9; (3)由tan

6、A2.4,得A67.4;由tanB0.5,得B26.6.,cos55= cos70= cos7428 =,tan38 = tan802543=,sin20=,sin35=,sin1532 =,0.3420,0.3420,0.5736,0.5736,0.2678,0.2678,5.930,0.0547,角度增大,正弦值增大,余弦值减小,正切值增大,拓广探索,比一比,你能得出什么结论?,正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大),正切值随着角度的增大(或减小)而增大(或减小),归纳总结,例3:如图,从A地到B地的公路需经过C地,图中AC10千米,

7、CAB25,CBA45.因城市规划的需要,将在A、B两地之间修建一条笔直的公路,(1)求改直后的公路AB的长; (2)问公路改直后该段路程比原来缩短了多少千米(精确到0.1)?,(1)求改直后的公路AB的长;,解:(1)过点C作CDAB于点D, AC10千米,CAB25, CDsinCABACsin25100.42104.2(千米),ADcosCABACcos25100.91109.1(千米) CBA45,BDCD4.2(千米),,ABADBD9.14.213.3(千米) 所以,改直后的公路AB的长约为13.3千米;,(2)问公路改直后该段路程比原来缩短了多少千米(精确到0.1)?,(2)AC

8、10千米,ACBCAB105.913.32.6(千米) 所以,公路改直后该段路程比原来缩短了约2.6千米,【方法总结】解决问题的关键是作出辅助线,构造直角三角形,利用三角函数关系求出有关线段的长,例4:如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直他们在A处测得塔尖D的仰角为45,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角DBN61.4,小山坡坡顶E的仰角EBN25.6.现在请你帮助课外活动小组算一算塔高DE大约是多少米 (结果精确到个位),解:延长DE交AB延长线于点F,则DFA90. A45, AFDF. 设EFx, tan25.6 0.5, B

9、F2x,则DFAF502x, 故tan61.4 1.8, 解得x31. 故DEDFEF503123181(米) 所以,塔高DE大约是81米,解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,方法总结,当堂练习,1. 已知下列锐角三角函数值,用计算器求其相应的锐角:,(1)sinA=0.627 5,sinB0.6175;(2)cosA0.625 2,cosB0.165 9;(3)tanA4.842 8,tanB0.881 6.,B3882,A385157,A511811,B80272,A781958,B412358,2.

10、已知:sin232+cos2=1,则锐角等于( ) A32 B58 C68 D以上结论都不对,A,3.用计算器验证,下列等式中正确的是( ) Asin1824+sin3526=sin45 Bsin6554-sin3554=sin30 C2sin1530=sin31 Dsin7218-sin1218=sin4742,D,A,4.下列各式中一定成立的是( ) A.tan75tan48tan15 B. tan75tan48tan15 C. cos75cos48cos15 D. sin75sin480.当角度在45A90间变化时,tanA1.,D,6.如图所示,电视塔高AB为610米,远处有一栋大楼,

11、某人在楼底C处测得塔顶B的仰角为45,在楼顶D处测得塔顶B的仰角为39. (1)求大楼与电视塔之间的距离AC; (2)求大楼的高度CD(精确到1米),解析 (1)利用ABC是等腰直角三角形易得AC的长; (2)在RtBDE中,运用直角三角形的边角关系即可求出BE的长,用AB的长减去BE的长度即可,课堂小结,三角函数的计算,用计算器求锐角的三角函数值或角的度数,不同的计算器操作步骤可能有所不同,利用计算器探索锐角三角函数的新知,正弦值随着角度的增大(或减小)而增大(或减小);,余弦值随着角度的增大(或减小)而减小(或增大);,正切值随着角度的增大(或减小)而增大(或减小).,见学练优本课时练习,课后作业,