ImageVerifierCode 换一换
格式:PPT , 页数:26 ,大小:741.50KB ,
资源ID:46919      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-46919.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019年春人教版七年级下数学《6.1.3平方根》课件)为本站会员(好样****8)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2019年春人教版七年级下数学《6.1.3平方根》课件

1、6.1 平方根,第六章 实 数,导入新课,讲授新课,当堂练习,课堂小结,第3课时 平方根,1.了解平方根的概念,并理解平方与开平方的关系; 2.会求非负数的平方根(重点、难点),学习目标,1.什么叫做算术平方根?,2.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根.100;1; ; 0; 0.0025; (-3)2 ; 25;,导入新课,回顾与思考,(1)32= ,(3)2= ;,(2) , ;,(3)0.82= ,(0.8)2= .,9,0.64,0.64,3. 填空,9,思考:反过来,如果已知一个数的平方,怎样求这个数?,问题 如果一个数的平方等于9,这个数是多少?,由于 ,

2、 所以这个数是3或-3.,讲授新课,3和-3互为相反数,会不会是巧合呢?,(1) 4的平方等于16,那么16的算术平方根就是_ (2) 的平方等于 ,那么 的算术平方根就是_ (3) 展厅地面为正方形,其面积是49 m2,则其边长为_m.,你发现了吗,4,7,问题:平方等于16, ,49的数还有吗?,填一填1,写出左圈和右圈中的“?”表示的数:,-11,11,0.6,0,没有,x,2,x,8,-8,4,3,4,3,-,?,?,?,?,?,?,?,?,?,?,-4,-0.6,填一填2,你发现了吗,64,121,0.36,0,根据上述问题,即要找出一个数,使它的平方等于给定的数.我们抽象出下述概念

3、:,如果有一个数x,使得x2=a,那么我们把x叫作a的一个平方根,也叫作二次方根.,例如: (1)2=1,1的平方根为1.,一、平方根的概念,1. 144的平方根是什么?,2. 0的平方根是什么?,3.,的平方根是什么?,4. -4有没有平方根?为什么?,0,没有,因为一个数的平方不可能是负数,试一试,通过这些题目的解答,你能发现什么?,问题:(1)正数有几个平方根?(2)0有几个平方根?(3)负数呢?,有没有一个数的平方是负数?,想一想,因为任何实数的平方都为非负数,所以负数没有平方根,也没有算术平方根.,平方根的性质:1.正数有两个平方根,两个平方根 互为相反数.2.0的平方根还是0.3.

4、负数没有平方根.,要点归纳,判断下列说法是否正确,并说明理由 (1)49的平方根是7; (2)2是4的平方根; (3)-5是25的平方根; (4)64的平方根是8; (5)-16的平方根是-4,典例精析,例1 一个正数的两个平方根分别是2a1和a4,求这个数,解:由于一个正数的两个平方根是2a1和a4, 则有2a1a40,即3a30,解得a1.所以这个数为(2a1)2(21)29.,方法归纳:一个正数有两个平方根,它们互为相反数.,+1 -1 +2 -2 +3 -3,1 4 9,已知一个数,求它的平方的运算,叫作平方运算.,回顾平方的概念,+1 -1 +2 -2 +3 -3,1 4 9,反之,

5、已知一个数的平方,求这个数的运算是什么?,求一个数的平方根的运算叫作开平方.,二、开平方的概念,例2 分别求下列各数的平方根:36, ,1.21.,解 由于62=36,,因此36的平方根是6与-6.,36是正数,(1)36,有两个平方根,即,典例精析,(2),解: 由于 2= ,,有两个平方根,因此 的平方根是 与 .,解: 由于1.12=1.21,,有两个平方根,(3)1.21,因此1.21的平方根是1.1与-1.1.,即,即,表示a的正的平方根,表示a的负的平方根,记作,aa0的平方根表示为,一个非负数的平方根的表示方法:,(算术平方根),三、平方根的数学符号表示,说一说,各表示什么意义?

6、,表示7的正的平方根(即算术平方根),表示7的负的平方根,表示7的平方根,例3 求下列各式的值:,解:(1) ;,(2) ;,(3) .,典例精析,归纳总结,1.包含关系:平方根包含算术平方根,算术平方根是平方根的一种.,平方根与算术平方根的联系与区别:,2.只有非负数才有平方根和算术平方根.,3. 0的平方根是0,算术平方根也是0.,区别:,1.个数不同:一个正数有两个平方根,但只有一个算术平方根.,联系:,当堂练习,2.下列说法不正确的是_ A.0的平方根是0 B. 的平方根是2 C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数,1.下列说法正确的是_ -3是9的平方根; 25的平方根是5; -36的平方根是-6; 平方根等于0的数是0; 64的算术平方根是8.,B,3. 判断下列说法是否正确.,正确.,(4)(-4)2的平方根是-4.,(1) 是 的一个平方根;,(2) 是6的算术平方根;,(3) 的值是4;,正确.,不正确,是 4.,不正确,是 4.,4. 分别求 64, ,6.25的平方根.,解:(1),(2),5.求下列各式的值:,(1),(2),(3),(3),平方根,平方根的概念,课堂小结,开平方及相关运算,平方根的性质,