3.3.2 两点间的距离,3.3 直线的交点坐标与距离公式,第三章 直线与方程,已知平面上两点P1(x1,y1), P2(x2,y2),如何求P1 P2的距离| P1 P2 |呢?,两点间的距离,已知平面上两点P1(x1,y1), P2(x2,y2),如何求P1 P2的距离| P1 P2 |呢?,两点间的距离,Q,(x2,y1),已知平面上两点P1(x1,y1)和P2(x2,y2),直线P1P2的斜率为k,则两点间距离公式的两种变形分别为:,知识探究,或,例题分析,解:设所求点为P(x,0),于是有,解得x=1,所以所求点P(1,0),例题分析,例2、证明平行四边形四条边的平方和等于两条对角线的平方和。,(b,c),(a+b,c),(a,0),(0,0),解:如图,以顶点A为坐标原点,AB所在直线为x轴,建立直角坐标系,则有A(0,0),设B(a,0),D(b,c),由平行四边形的性质可得C(a+b,c),因此,平行四边形四条边的平方和等于两条对角线的 平方和,用坐标法证明简单的平面几何问题的步骤:,第一步:建立坐标系,用坐标表示有关的量;,第二步:进行有关的代数运算;,第三步:把代数运算结果“翻译”所几何关系.,平面内两点P1(x1,y1), P2(x2,y2) 的距离公式是,小结,