1、7.3平行线的判定基础导练1.如图,若14,则 ;若23,则 。2.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么这两次拐弯的角度应是( )A、第一次向右拐40,第 二次向左拐140;B、第一次向左拐40,第 二次向右拐40;C、第一次向左拐40,第二次向左拐140;D、第一次向右拐40,第二次向右拐403.如图,一个弯形管道ABCD 的拐角ABC120, BCD60 ,这时说管道AB?CD对吗?为什么?4.如图,量得180,2100,可以判定ABCD,它的根据是什么?5.已知AE是FAC的平分线 ,BC40,试说明AEBC。6.如图,已知 A与D互补,可以判定哪两条直
2、线平行?B与哪个角互补,可以判定直线ADBC?AB CEFA BCDABCD1ABCD324 1DBCAFE 2能力提升7.两条直线被第三条直线所截,如果同位角相等,可以推出内错角相等、同旁内角互补。如果已知内错角相等,怎样推出同位角相等,同旁内角互补?已知同旁内角互补,同位角相等吗?为什 么?8.在遇到一个新问题时,我们 常常把这转化为已知的(或已经 解决的) 问题 来 解决,在这一节中,我们是怎样利用“同位角相等,两直 线平行”推出“内错角相等,两直线平行”的?怎样利用“ 同位角相等,两直线平行”推出“旁内角互补,两直线平行”的 ?9.下面的判断是否正确,若不正确,就怎样改正?如图:若14
3、,则CDAB。若23,则AD BC。10.通过这一节的学习,我们知道了“同位角相等,两直线平行”、“内错角相等,两 直线平行”及“旁 内角互补, 两直线平行”。反过来成立 吗?如果有两条平行直线被第三条直线所截,那么它们的同位角相等吗?内错角相等吗?同旁内角呢?请阅读“1.3 平行线的性质”并思考下列问题:1、两直线平行,同位角相等吗?2、平行线的性质和平行线的判定有什么区别?2A BCD13 42 参考答案1.AD,BC;AB, DC。2.2.B。3.ABCD,同旁内角互补,两直线平 行。4.同旁内角互补, 两直线平行。5.FAC BC80,AE平分FAC,EAC FAC40,21EACC,AEBC(内错角相等,两直线平行)。6.(1)ABCD;(2)C。7.8.略9.(1)14, ADBC。( 2) 23, ABCD。10.略.