ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:968.95KB ,
资源ID:257479      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-257479.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2024年高考数学真题分类汇编04:数列(含答案))为本站会员(147037****qq.com)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2024年高考数学真题分类汇编04:数列(含答案)

1、数列一、单选题1(2024全国)等差数列的前项和为,若,()ABC1D2(2024全国)等差数列的前项和为,若,则()ABC1D2二、填空题3(2024全国)记为等差数列的前n项和,若,则 .4(2024北京)已知,不为常数列且各项均不相同,下列正确的是 .,均为等差数列,则M中最多一个元素;,均为等比数列,则M中最多三个元素;为等差数列,为等比数列,则M中最多三个元素;单调递增,单调递减,则M中最多一个元素.5(2024上海)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是 三、解答题6(2024全国)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可

2、被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列(1)写出所有的,使数列是可分数列;(2)当时,证明:数列是可分数列;(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:7(2024全国)已知双曲线,点在上,为常数,按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.(1)若,求;(2)证明:数列是公比为的等比数列;(3)设为的面积,证明:对任意的正整数,.8(2024全国)已知等比数列的前项和为,且.(1)求的通项公式;(2)求数列的通项公式.9(2024全国)记为数列的前项和,且(1)求的通项公式;(2)设,求数列的前项和为10(

3、2024北京)设集合对于给定有穷数列,及序列,定义变换:将数列的第项加1,得到数列;将数列的第列加,得到数列;重复上述操作,得到数列,记为(1)给定数列和序列,写出;(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;(3)若数列的各项均为正整数,且为偶数,证明:“存在序列,使得为常数列”的充要条件为“”11(2024天津)已知数列是公比大于0的等比数列其前项和为若(1)求数列前项和;(2)设,其中是大于1的正整数()当时,求证:;()求参考答案1D【分析】可以根据等差数列的基本量,即将题目条件全转化成和来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【解析】

4、方法一:利用等差数列的基本量由,根据等差数列的求和公式,又.故选:D方法二:利用等差数列的性质根据等差数列的性质,由,根据等差数列的求和公式,故.故选:D方法三:特殊值法不妨取等差数列公差,则,则.故选:D2B【分析】由结合等差中项的性质可得,即可计算出公差,即可得的值.【解析】由,则,则等差数列的公差,故.故选:B.395【分析】利用等差数列通项公式得到方程组,解出,再利用等差数列的求和公式节即可得到答案.【解析】因为数列为等差数列,则由题意得,解得,则.故答案为:.4【分析】利用两类数列的散点图的特征可判断的正误,利用反例可判断的正误,结合通项公式的特征及反证法可判断的正误.【解析】对于,

5、因为均为等差数列,故它们的散点图分布在直线上,而两条直线至多有一个公共点,故中至多一个元素,故正确.对于,取则均为等比数列,但当为偶数时,有,此时中有无穷多个元素,故错误.对于,设,若中至少四个元素,则关于的方程至少有4个不同的正数解,若,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;若,考虑关于的方程奇数解的个数和偶数解的个数,当有偶数解,此方程即为,方程至多有两个偶数解,且有两个偶数解时,否则,因单调性相反,方程至多一个偶数解,当有奇数解,此方程即为,方程至多有两个奇数解,且有两个奇数解时即否则,因单调性相反,方程至多一个奇数解,因为,不可能同时成立,故不可能有4个不同的正数解,故

6、正确.对于,因为为单调递增,为递减数列,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故正确.故答案为:【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.5【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【解析】由题设有,因为,故,故,当时,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等

7、式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.6(1)(2)证明见解析(3)证明见解析【分析】(1)直接根据可分数列的定义即可;(2)根据可分数列的定义即可验证结论;(3)证明使得原数列是可分数列的至少有个,再使用概率的定义.【解析】(1)首先,我们设数列的公差为,则.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形,得到新数列,然后对进行相应的讨论即可.换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.

8、那么剩下四个数只可能是,或,或.所以所有可能的就是.(2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组成等差数列:,共组;,共组.(如果,则忽略)故数列是可分数列.(3)定义集合,.下面证明,对,如果下面两个命题同时成立,则数列一定是可分数列:命题1:或;命题2:.我们分两种情况证明这个结论.第一种情况:如果,且.此时设,.则由可知,即,故.此时,由于从数列中取出和后,剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:,共组;,共组;,共组.(如果某一部分的组数为,则忽略之)故此时数列是可分数列.第二种情况:如果,且.此时设,.则由可知,即,故.由于,故,从而,

9、这就意味着.此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:,共组;,共组;全体,其中,共组;,共组.(如果某一部分的组数为,则忽略之)这里对和进行一下解释:将中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:,. 可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,中的十个元素以外的所有数.而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列是可分数列.至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.然后我们来考

10、虑这样的的个数.首先,由于,和各有个元素,故满足命题1的总共有个;而如果,假设,则可设,代入得.但这导致,矛盾,所以.设,则,即.所以可能的恰好就是,对应的分别是,总共个.所以这个满足命题1的中,不满足命题2的恰好有个.这就得到同时满足命题1和命题2的的个数为.当我们从中一次任取两个数和时,总的选取方式的个数等于.而根据之前的结论,使得数列是可分数列的至少有个.所以数列是可分数列的概率一定满足.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(1),(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出的

11、坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明的取值为与无关的定值即可.思路二:使用等差数列工具,证明的取值为与无关的定值即可.【解析】(1)由已知有,故的方程为.当时,过且斜率为的直线为,与联立得到.解得或,所以该直线与的不同于的交点为,该点显然在的左支上.故,从而,.(2)由于过且斜率为的直线为,与联立,得到方程.展开即得,由于已经是直线和的公共点,故方程必有一根.从而根据韦达定理,另一根,相应的.所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.所以.这就得到,.所以.再由,就知道,所以数列是公比

12、为的等比数列.(3)方法一:先证明一个结论:对平面上三个点,若,则.(若在同一条直线上,约定)证明:.证毕,回到原题.由于上一小问已经得到,故.再由,就知道,所以数列是公比为的等比数列.所以对任意的正整数,都有.而又有,故利用前面已经证明的结论即得.这就表明的取值是与无关的定值,所以.方法二:由于上一小问已经得到,故.再由,就知道,所以数列是公比为的等比数列.所以对任意的正整数,都有.这就得到,以及.两式相减,即得.移项得到.故.而,.所以和平行,这就得到,即.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(1)(2)【分析】(1)利用退位法可

13、求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求.【解析】(1)因为,故,所以即故等比数列的公比为,故,故,故.(2)由等比数列求和公式得.9(1)(2)【分析】(1)利用退位法可求的通项公式(2)利用错位相减法可求.【解析】(1)当时,解得当时,所以即,而,故,故,数列是以4为首项,为公比的等比数列,所以.(2),所以故所以,.10(1)(2)不存在符合条件的,理由见解析(3)证明见解析【分析】(1)直接按照的定义写出即可;(2)利用反证法,假设存在符合条件的,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【解析】(1)由题意得;(2)假设存在符合

14、条件的,可知的第项之和为,第项之和为,则,而该方程组无解,故假设不成立,故不存在符合条件的;(3)我们设序列为,特别规定.必要性:若存在序列,使得为常数列.则,所以.根据的定义,显然有,这里,.所以不断使用该式就得到,必要性得证.充分性:若.由已知,为偶数,而,所以也是偶数.我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.上面已经证明,这里,.从而由可得.同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.下面证明不存在使得.假设存在,根据对称性,不妨设,即.情况1:若,则由和都是偶数,知.对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;情况2:若

15、,不妨设.情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的都有.假设存在使得,则是奇数,所以都是奇数,设为.则此时对任意,由可知必有.而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾.综上,只可能,而,故是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(1)(2)证明见详解;【分析】(1)设等比数列的公比为,根据题意结合等比数列通项公式求,再结合等比数列求和公式分析求解;(2)根据题意分析可知,利用作差法分析证明;根据题意结合等差数列求和公式可得,再结合裂项相消法分析求解.【解析】(1)设等比数列的公比为,因为,即,可得,整理得,解得或(舍去),所以.(2)(i)由(1)可知,且,当时,则,即可知,可得,当且仅当时,等号成立,所以;(ii)由(1)可知:,若,则;若,则,当时,可知为等差数列,可得,所以,且,符合上式,综上所述:.【点睛】关键点点睛:1.分析可知当时,可知为等差数列;2.根据等差数列求和分析可得.