ImageVerifierCode 换一换
格式:DOC , 页数:24 ,大小:628.85KB ,
资源ID:228288      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-228288.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第6章《图形的相似》选择题专题练习(含答案解析)2022-2023学年江苏省苏州市九年级数学下册)为本站会员(热***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

第6章《图形的相似》选择题专题练习(含答案解析)2022-2023学年江苏省苏州市九年级数学下册

1、 第第 6 章图形的相似选择题专练章图形的相似选择题专练 一选择题(共一选择题(共 29 小题)小题) 1如图,AB 是O 的直径,半径 OCAB 于点 O,AD 平分BAC,交 OC 于点 E,交于点 D,连接CD,OD,给出以下四个结论: SACE2SDOE;CE=32OE;=2;2CD2CEAB 其中结论正确的序号是( ) A B C D 2如图,ABCA1B1C1,若= 4111,A1B14,则 AB 的长度为( ) A1 B2 C8 D16 3 (2022 秋姑苏区校级期中)如图,ABC 中,BDAB,BD、AC 相交于点 D,AD=47AC,AB4,ABC150,则DBC 的面积是

2、( ) A3314 B9314 C337 D637 4 (2021 秋苏州期中)如图,下列条件不能判定ACD 与ABC 相似的是( ) A= B= CADCACB DACDB 5 (2022 春吴江区期中)如图是由一些边长为 1 的等边三角形组成的网格,其中 A、B、D、E 均是等边三角形的顶点,延长 AB 交 DE 于点 C,则的值为( ) A33 B32 C22 D12 6 (2021 秋高新区期中)已知 2a3b0,则的值为( ) A23 B2 C3 D32 7 (2022 春吴江区期中)如图所示,小正方形的边长均为 1,则下列选项中阴影部分的三角形与ABC 相似的是( ) A B C

3、D 8 (2020 秋相城区期中)已知=35,则2:的值是( ) A35 B45 C34 D54 9 (2020 秋相城区期中)如图,在矩形 ABCD 中,点 E 是边 AD 上一点,且 AE2ED,EC 交对角线 BD于点 F,则等于( ) A13 B12 C23 D32 10 (2020 秋虎丘区校级期中)如图,O 中,AB,CD 相交于 P,AP:PB1:3,OPD30,则 CP: PD( ) A1:2 B (15 3) : (3 + 15) C3:2 D1:3 11 (2022 春工业园区校级期中)若=23,则:的值为( ) A23 B53 C35 D32 12 (2022 春工业园区

4、校级期末)两个三角形相似比是 2:3,其中小三角形的周长为 18,则另一个大三角形的周长是( ) A12 B18 C24 D27 13(2022 春工业园区校级期末)九章算术 中记载了一种测量古井水面以上部分深度的办法, 如图所示,在井口 A 处立一垂直于井口的木杆 AB,从木杆的顶端 B 观测井水水岸 D,视线 BD 与井口的直径 CA 交于点 E,若测得 AB1 米,AC1.6 米,AE0.4 米,则水面以上深度 CD 为( ) A4 米 B3 米 C3.2 米 D3.4 米 14 (2022 春常熟市期末)若=53,则:的值为( ) A23 B35 C83 D1 15 (2022 春工业

5、园区期末) 如图, ABC 与DEF 位似, 点 O 是它们的位似中心, 其中 OA: OD2: 1,若 DE4,则 AB 的长为( ) A1 B2 C8 D16 16 (2022 春高新区校级期末)已知线段 AB2,点 P 是线段 AB 的黄金分割点(APBP) ,则线段 AP 的长为( ) A3;52 B5;12 C35 D5 1 17 (2022 春泰安期末)已知ABCABC,AD 和 AD是它们的对应角平分线,若 AD8,AD12,则ABC 与ABC的面积比是( ) A2:3 B4:9 C3:2 D9;4 18 (2021 秋苏州期末)据墨经记载,在两千多年前,我国学者墨子和他的学生做

6、了“小孔成像”实验,阐释了光的直线传播原理小孔成像的示意图如图所示,光线经过小孔 O,物体 AB 在幕布上形成倒立的实像 CD若物体 AB 的高为 6cm,小孔 O 到物体和实像的水平距离 BE,CE 分别为 8cm,6cm,则实像 CD 的高度为( ) A4cm B4.5cm C5cm D6cm 19 (2022 春太仓市期末)已知=53,则:的值为( ) A23 B35 C83 D1 20 (2022 春常熟市期末)如图,在ABC 中,DEBC,若=23,则四边形的值为( ) A23 B49 C425 D421 21 (2021 秋高州市期末)若=25,则:的值为( ) A25 B37 C

7、27 D35 22 (2022 春吴江区期末)如图,小明在 A 时测得某树的影长为 8m,B 时又测得该树的影长为 2m,若两次日照的光线互相垂直,则树的高度为( )m A2 B4 C6 D8 23 (2021 春姑苏区期末)如图,在正方形网格中:ABC、EDF 的顶点都在正方形网格的格点上,ABCEDF,则ABC+ACB 的度数为( ) A30 B45 C60 D75 24 (2021 春苏州期末) 如图, 在平面直角坐标系中, ABC 的顶点 A 在第二象限, 点 B 坐标为 (2, 0) ,点 C 坐标为(1,0) ,以点 C 为位似中心,在 x 轴的下方作ABC 的位似图形ABC若点

8、A 的对应点 A的坐标为(2,3) ,点 B 的对应点 B的坐标为(1,0) ,则点 A 坐标为( ) A (3,2) B (2,32) C (52,32) D (52,2) 25 (2022 春工业园区校级期末)2020 年是紫禁城建成 600 年暨故宫博物院成立 95 周年,在此之前有多个国家曾发行过紫禁城元素的邮品图 1 所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图 1 中大门的门框并画出相关的几何图形 (图 2) ,我们发现设计师巧妙地使用了数学元素(忽略误差) ,图 2 中的四边形 ABCD 与四边形 ABCD是位似图

9、形,点 O 是位似中心,点 A是线段 OA 的中点,那么以下结论正确的是( ) A四边形 ABCD 与四边形 ABCD的相似比为 1:1 B四边形 ABCD 与四边形 ABCD的相似比为 1:2 C四边形 ABCD 与四边形 ABCD的周长比为 3:1 D四边形 ABCD 与四边形 ABCD的面积比为 4:1 26 (2021 春姑苏区期末)如图,在矩形 ABCD 中,将ADC 绕点 D 逆时针旋转 90得到FDE,B、F、E 三点恰好在同一直线上,AC 与 BE 相交于点 G,连接 DG以下结论正确的是( ) ACBE; BCGGAD; 点 F 是线段 CD 的黄金分割点; CG+2DGEG

10、 A B C D 27 (2021 春苏州期末)在四边形 ABCD 中 ABCD,对角线 AC 与 BD 交于 P,过点 P 作 AB 的平行线,交 AD、BC 于 M、N若 AB2,PDC 与PAB 的面积比为 1:4,则 MN 的长是( ) A32 B23 C43 D54 28 (2021 春苏州期末)如果=12,那么:;的值是( ) A3 B3 C12 D12 29 (2021 春苏州期末)如图,ABC 中,ABAC12,BC85,点 D 在 BC 边上,且 BD12BC,ABD 与AED 关于 AD 对称,AE 与 BC 交于点 F,则的最小值为( ) A32 B52 C23 D53

11、参考答案解析参考答案解析 一选择题(共一选择题(共 29 小题)小题) 1如图,AB 是O 的直径,半径 OCAB 于点 O,AD 平分BAC,交 OC 于点 E,交于点 D,连接CD,OD,给出以下四个结论: SACE2SDOE;CE=32OE;=2;2CD2CEAB 其中结论正确的序号是( ) A B C D 【解答】解:设O 的半径为 r,则 OAOCODOBr, ODEOAD,OD2r2, AD 平分BAC, CAEOAD, CAEODE, AECDEO, ACEDOE, OCAB, AOCBOC90, AC2OA2+OC2r2+r22r2, AC= 2r, = ()2=22=222=

12、2, SACE2SDOE, 故正确; ACEDOE, =2=2, CE= 2OE32OE, 故错误; DACDAB, = , = =2, 故正确; CODBOD=12BOC=12AOC,CDE=12AOC, CDECOD, DCEOCD, DCEOCD, =, CD2CEOC, 2CD2CE2OC, 2OCAB, 2CD2CEAB, 故正确, 故选:D 2如图,ABCA1B1C1,若= 4111,A1B14,则 AB 的长度为( ) A1 B2 C8 D16 【解答】解:ABCA1B1C1,= 4111, 面积比为 4:1, 相似比为 2:1, A1B14, AB2A1B18, 故选:C 3

13、(2022 秋姑苏区校级期中)如图,ABC 中,BDAB,BD、AC 相交于点 D,AD=47AC,AB4,ABC150,则DBC 的面积是( ) A3314 B9314 C337 D637 【解答】解:过点 C 作 CEBD,交 BD 的延长线于点 E,如图, BDAB, ABD90 ABC150, DBCABCABD60 BDAB,CEBD, ABEC ABDCED = AD=47AC, =43 4=43 EC3 在 RtCEB 中, tanEBC=, BE=60= 3 3;=43 BD=437 =12 =124373=637 故选:D 4 (2021 秋苏州期中)如图,下列条件不能判定A

14、CD 与ABC 相似的是( ) A= B= CADCACB DACDB 【解答】解:由图可得:AA, 当=或ADCACB 或ACDB 时,ACD 与ABC 相似,也可以=; A 选项中角 A 不是成比例的两边的夹角 故选:A 5 (2022 春吴江区期中)如图是由一些边长为 1 的等边三角形组成的网格,其中 A、B、D、E 均是等边三角形的顶点,延长 AB 交 DE 于点 C,则的值为( ) A33 B32 C22 D12 【解答】解:如图,由题意知,BEAF, CBEBAF, CEBBFA60, CBEBAF, =, 即1=23, CE=23, CDDECE123=13, =1323=12,

15、 故选:D 6 (2021 秋高新区期中)已知 2a3b0,则的值为( ) A23 B2 C3 D32 【解答】解:2a3b0, 2a3b, 则的值为:32 故选:D 7 (2022 春吴江区期中)如图所示,小正方形的边长均为 1,则下列选项中阴影部分的三角形与ABC 相似的是( ) A B C D 【解答】解:根据题意得:AB= 32+ 12= 10,AC2,BC= 12+ 12= 2, BC:AC:AB1:2:5, A、三边之比为 1:2:5,图中的三角形(阴影部分)与ABC 相似; B、三边之比2:5:3,图中的三角形(阴影部分)与ABC 不相似; C、三边之比为 1:5:22,图中的三

16、角形(阴影部分)与ABC 不相似; D、三边之比为 2:5:13,图中的三角形(阴影部分)与ABC 不相似 故选:A 8 (2020 秋相城区期中)已知=35,则2:的值是( ) A35 B45 C34 D54 【解答】解:=35, x=35y, 2:=235:=54 故选:D 9 (2020 秋相城区期中)如图,在矩形 ABCD 中,点 E 是边 AD 上一点,且 AE2ED,EC 交对角线 BD于点 F,则等于( ) A13 B12 C23 D32 【解答】解:四边形 ABCD 是矩形, ADBC,ADBC, EFDCFB, =, AE2ED, BCAD3DE, =3=13, 故选:A 1

17、0 (2020 秋虎丘区校级期中)如图,O 中,AB,CD 相交于 P,AP:PB1:3,OPD30,则 CP:PD( ) A1:2 B (15 3) : (3 + 15) C3:2 D1:3 【解答】解:过点 O 作 OECD 于 E, 设 OEx, OPD30, OP2OE2x,PE= 3x, 连接 AC,BD, 设 APy, AP:PB1:3, PB3y, y+2x3y2x, y2x, ACPPBD,APCBPD, ACPBDP, =, APPBPCPD, 设 CPm,则 PDm+23x, 2x 6 = ( + 23), m(15 3)x(负值舍去) , PDm+23x(15 + 3)x

18、, CP:PD(15 3) : (15 + 3) 故选:B 11 (2022 春工业园区校级期中)若=23,则:的值为( ) A23 B53 C35 D32 【解答】解:=23, 3a2b, a=23b, :=23:=53, 故选:B 12 (2022 春工业园区校级期末)两个三角形相似比是 2:3,其中小三角形的周长为 18,则另一个大三角形的周长是( ) A12 B18 C24 D27 【解答】解:设大三角形的周长为 x 两个相似三角形相似比是 2:3,其中小三角形的周长为 18, 18:x2:3, x27, 故选:D 13(2022 春工业园区校级期末)九章算术 中记载了一种测量古井水面

19、以上部分深度的办法, 如图所示,在井口 A 处立一垂直于井口的木杆 AB,从木杆的顶端 B 观测井水水岸 D,视线 BD 与井口的直径 CA 交于点 E,若测得 AB1 米,AC1.6 米,AE0.4 米,则水面以上深度 CD 为( ) A4 米 B3 米 C3.2 米 D3.4 米 【解答】解:由题意知:ABCD, ABECDE, =, 1=0.41.6;0.4, 解得 CD3, 水面以上深度 CD 为 3 米 故选:B 14 (2022 春常熟市期末)若=53,则:的值为( ) A23 B35 C83 D1 【解答】解:=53, : =+1 =53+1 =83, 故选:C 15 (2022

20、 春工业园区期末) 如图, ABC 与DEF 位似, 点 O 是它们的位似中心, 其中 OA: OD2: 1,若 DE4,则 AB 的长为( ) A1 B2 C8 D16 【解答】解:ABC 与DEF 位似, ABDE, AOBDOE, AB:DEOA:OD2:1, DE4, AB8, 故选:C 16 (2022 春高新区校级期末)已知线段 AB2,点 P 是线段 AB 的黄金分割点(APBP) ,则线段 AP 的长为( ) A3;52 B5;12 C35 D5 1 【解答】解:点 P 是线段 AB 的黄金分割点,APBP, AP=512AB=5122= 5 1, 故选:D 17 (2022

21、春泰安期末)已知ABCABC,AD 和 AD是它们的对应角平分线,若 AD8,AD12,则ABC 与ABC的面积比是( ) A2:3 B4:9 C3:2 D9;4 【解答】解:ABCABC,AD 和 AD是它们的对应角平分线,AD8,AD12, 两三角形的相似比为:8:122:3, 则ABC 与ABC的面积比是:4:9 故选:B 18 (2021 秋苏州期末)据墨经记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理小孔成像的示意图如图所示,光线经过小孔 O,物体 AB 在幕布上形成倒立的实像 CD若物体 AB 的高为 6cm,小孔 O 到物体和实像的水平距离

22、 BE,CE 分别为 8cm,6cm,则实像 CD 的高度为( ) A4cm B4.5cm C5cm D6cm 【解答】解:ABCD, OABOCD, =, 6=68, CD4.5 答:实像 CD 的高度为 4.5cm, 故选:B 19 (2022 春太仓市期末)已知=53,则:的值为( ) A23 B35 C83 D1 【解答】解:=53, :=+1=53+1=83 故选:C 20 (2022 春常熟市期末)如图,在ABC 中,DEBC,若=23,则四边形的值为( ) A23 B49 C425 D421 【解答】解:DEBC, AEDB,ADEC, ADEABC, =, =23, =25,

23、=425, 则 SACE=425SABC, S四边形BCDESABCSACE=2125SABC, 四边形=4252125=421 故选:D 21 (2021 秋高州市期末)若=25,则:的值为( ) A25 B37 C27 D35 【解答】解:=25, y=52x, :=:52=27 故选:C 22 (2022 春吴江区期末)如图,小明在 A 时测得某树的影长为 8m,B 时又测得该树的影长为 2m,若两次日照的光线互相垂直,则树的高度为( )m A2 B4 C6 D8 【解答】解:根据题意,作EFC,树高为 CD,且ECF90,ED2m,FD8m; E+F90,E+ECD90, ECDF,

24、EDCCDF, =,即 DC2EDFD2816, 解得 CD4m 故选:B 23 (2021 春姑苏区期末)如图,在正方形网格中:ABC、EDF 的顶点都在正方形网格的格点上,ABCEDF,则ABC+ACB 的度数为( ) A30 B45 C60 D75 【解答】解:ABCEDF, BACDEF135, ABC+ACB18013545, 故选:B 24 (2021 春苏州期末) 如图, 在平面直角坐标系中, ABC 的顶点 A 在第二象限, 点 B 坐标为 (2, 0) ,点 C 坐标为(1,0) ,以点 C 为位似中心,在 x 轴的下方作ABC 的位似图形ABC若点 A 的对应点 A的坐标为

25、(2,3) ,点 B 的对应点 B的坐标为(1,0) ,则点 A 坐标为( ) A (3,2) B (2,32) C (52,32) D (52,2) 【解答】解:如图,过点 A 作 AEx 轴于 E,过点 A作 AFx 轴于 F B(2,0) ,C(1,0) ,B(1,0) ,A(2,3) OB2,OCOB1,OF2,AF3, BC1,CB2,CF3, ABCABC, =12, AE=32, ACEACF,AECAFC90, AECAFC, =12, EC=32, OEEC+OC=52, A(52,32) , 故选:C 25 (2022 春工业园区校级期末)2020 年是紫禁城建成 600

26、年暨故宫博物院成立 95 周年,在此之前有多个国家曾发行过紫禁城元素的邮品图 1 所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图 1 中大门的门框并画出相关的几何图形(图 2) ,我们发现设计师巧妙地使用了数学元素(忽略误差) ,图 2 中的四边形 ABCD 与四边形 ABCD是位似图形,点 O 是位似中心,点 A是线段 OA 的中点,那么以下结论正确的是( ) A四边形 ABCD 与四边形 ABCD的相似比为 1:1 B四边形 ABCD 与四边形 ABCD的相似比为 1:2 C四边形 ABCD 与四边形 ABCD的周长比为 3:

27、1 D四边形 ABCD 与四边形 ABCD的面积比为 4:1 【解答】解:四边形 ABCD 与四边形 ABCD是位似图形,点 O 是位似中心,点 A是线段 OA 的中点, OA:OA1:2, AB:AB1:2, 四边形 ABCD 与四边形 ABCD的相似比为 2:1,周长的比为 2:1,面积比为 4:1 故选:D 26 (2021 春姑苏区期末)如图,在矩形 ABCD 中,将ADC 绕点 D 逆时针旋转 90得到FDE,B、F、E 三点恰好在同一直线上,AC 与 BE 相交于点 G,连接 DG以下结论正确的是( ) ACBE; BCGGAD; 点 F 是线段 CD 的黄金分割点; CG+2DG

28、EG A B C D 【解答】解:FDE 是ADC 绕点 D 逆时针旋转 90得到的, FDEADC, ADDF,DCDE,DEFDCA, 又四边形 ABCD 是矩形, ADC90, DAC+DCA90, 即DAG+DEF90, AGE90, 即 ACBE, 故正确; ACBE, BGC90, 即BGC 是直角三角形,而AGD 显然不是直角三角形, 故错误; 在 RtFCB 和 RtFDE 中, BFCEFC, RtFCBRtFDE, =, BCADDF,DEDC, =, 即 DF2FCDC, 点 F 是线段 CD 的黄金分割点, 故正确; 在线段 EF 上取 EGCG 并连接 DG,如图,

29、DCDE,DEFDCA, DEGDCG, 在DCG 和DEG中, = = = , DCGDEG(SAS) , DGDG,CDGEDG, CDGGDA90, EDG+GAD90, GDG90, GDG是等腰直角三角形, GG= 2DG, EGCG, EGEG+GGCG+2DG, 故正确; 故选:D 27 (2021 春苏州期末)在四边形 ABCD 中 ABCD,对角线 AC 与 BD 交于 P,过点 P 作 AB 的平行线,交 AD、BC 于 M、N若 AB2,PDC 与PAB 的面积比为 1:4,则 MN 的长是( ) A32 B23 C43 D54 【解答】解:设 PMx,PNy, ABCD

30、,MNAB, ABMNCD, CDPABP, AB2,PDC 与PAB 的面积比为 1:4, CD1, ABMNCD, DMPDAB,CPNCAB, =,=, =12, =13, 2=13,2=13, 解得:xy=23, MNx+y=43 故选:C 28 (2021 春苏州期末)如果=12,那么:;的值是( ) A3 B3 C12 D12 【解答】解:=12, b2a, 原式=+22= 3= 3 故选:B 29 (2021 春苏州期末)如图,ABC 中,ABAC12,BC85,点 D 在 BC 边上,且 BD12BC,ABD 与AED 关于 AD 对称,AE 与 BC 交于点 F,则的最小值为( ) A32 B52 C23 D53 【解答】解:作 AGBC 于 G,作 DHAE 于 H, ABAC12,BC85,AGBC, BGCG=12BC45, AG= 2 2= 144 80 =8, ABD 与AED 关于 AD 对称, BE,BDED, AGBDHE90, ABGEDH, =,即8=12, =812=23, BDED, DFDH, 23, 当 AEBC 时,F 与 H 重合,即 DFAE,此时 DFDH, 的最小值为23, 故选:C