ImageVerifierCode 换一换
格式:PPTX , 页数:10 ,大小:868.15KB ,
资源ID:220060      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-220060.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【班海】九年级【章节知识精讲】21.2.3公式法解一元二次方程因式分解法解一元二次方程ppt课件)为本站会员(吹**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【班海】九年级【章节知识精讲】21.2.3公式法解一元二次方程因式分解法解一元二次方程ppt课件

1、【知识精讲】因式分解法解一元二次方程 初三 数学 在预习课上,小颖、小明、小亮都设那个数为x,根据题意,可得方程x23x,但是他们的解法却各不相同.他们做得对吗?为什么?你是怎么做的?课海知识精讲课堂我们进一步探究。 小颖:由方程,得x2-3x0,因此x3 92,所以x10,x23, 所以这个数是0或3. 小明:方程x23x的两边同时约去x,得x3.所以这个数是3. 小亮:由方程x23x,得x2-3x0,即x(x-3)0,于是x0或x-30,因此x10,x23,所以这个数是0或3. 小颖、小明、小亮用三种方法解决此问题,观察以上三个同学的做法,是否存在问题?你认为哪种方法更合适?为什么? 小明

2、同学的做法不正确,因为要方程两边同时约去x,必须确保x不等于0,但题目中没有说明. x需确保不等于0,而此题恰好x0,所以不能约去,否则会丢根. 小亮做的呢?由x(x-3)0,得x10或x23,因为300,0(-3)0,000,所以也是正确的。 一般的说,如果ab0,那么a0或b0,所以a与b至少有一个等于0. 结论:结论:利用若ab0,则a0或b0,把一元二次方程变成一元一次方程,从而求出方程的解.我们把这种解一元二次方程的方法称为因式分解法因式分解法. . 我们可这样理解:如果ab0,那么a0或b0,这就是说,当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不

3、用“且”,所以由x(x-3)0得到x0或x-30时,中间应写上“或”字. 根据刚才解方程的思路和因式分解法解方程的概念,你能不能总结因式分解法解方程的步骤是什么? 因式分解法解一元二次方程的步骤因式分解法解一元二次方程的步骤: : (1)将方程的右边化为0; (2)将方程的左边进行因式分解; (3)令每一个因式为0,转化为两个一元一次方程; (4)解一元一次方程,得原方程的解. 解一元二次方程时,四种解法的使用顺序是:直接开平方法、因式分解法、 公式法、配方法,一般先考虑用因式分解法,如果是特殊形式(x+a)2=b (b0),用直接开平方法,最一般方法是公式法,配方法在题目没有特殊 要求时一般不用. 当方程的左边能分解因式,方程的右边为0时,常常用因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简便方法,要会灵活运用. 解下列方程. (1)x(x-2)+x-2=0; (2)5x2-2x-14=x2-2x+34. 解解: :(1)因式分解,得(x-2)(x+1)=0, 即x-2=0或x+1=0, x1=2,x2=-1. (2)移项、合并同类项,得4x2-1=0, 因式分解,得(2x+1)(2x-1)=0, 即2x+1=0或2x-1=0, x1=-12,x2=12.