ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:1.16MB ,
资源ID:219555      下载积分:30 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-219555.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年高考数学一轮复习专题13:导数与函数的极值、最值(含答案解析))为本站会员(吹**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2023年高考数学一轮复习专题13:导数与函数的极值、最值(含答案解析)

1、专题13 导数与函数的极值、最值真题试练1(2021新高考)函数f(x) =|2x-l|-2lnx的最小值为 2(2022浙江真题)设函数 ()求 的单调区间;()已知 ,曲线 上不同的三点 处的切线都经过点 证明:()若 ,则 ;()若 ,则 (注: 是自然对数的底数)基础梳理1函数的极值(1)函数的极小值函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧f(x)0,则a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值(2)函数的极大值函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0

2、;而且在点xb附近的左侧f(x)0,右侧f(x)1时,f(x)0,当时,f(x)0,所以f(x)min=f(1)=1;当时,f(x)=1-2x-2lnx,则,此时函数f(x)=1-2x-2lnx在上为减函数,则f(x)min=,综上,f(x)min=1故答案为:12(2022浙江真题)设函数 ()求 的单调区间;()已知 ,曲线 上不同的三点 处的切线都经过点 证明:()若 ,则 ;()若 ,则 (注: 是自然对数的底数)【答案】解:() 故 的减区间为 ,增区间为 . ()()因为过 有三条不同的切线,设切点为 ,故 ,故方程 有3个不同的根,该方程可整理为 ,设 ,则 ,当 或 时, ;当

3、 时, ,故 在 上为减函数,在 上为增函数,因为 有3个不同的零点,故 且 ,故 且 ,整理得到: 且 ,此时 ,设 ,则 ,故 为 上的减函数,故 ,故 .()当 时,同()中讨论可得:故 在 上为减函数,在 上为增函数,不妨设 ,则 ,因为 有3个不同的零点,故 且 ,故 且 ,整理得到: ,因为 ,故 ,又 ,设 , ,则方程 即为: 即为 ,记 则 为 有三个不同的根,设 , ,要证: ,即证 ,即证: ,即证: ,即证: ,而 且 ,故 ,故 ,故即证: ,即证: 即证: ,记 ,则 ,设 ,则 即 ,故 在 上为增函数,故 ,所以 ,记 ,则 ,所以 在 为增函数,故 ,故 即

4、,故原不等式得证.【解析】()求出导函数,利用导数的性质即可求得函数的单调区间;()(i) 因为过 有三条不同的切线,设切点为 ,故有3个不同的根,整理为 ,令 ,由题意得到函数g(x)有三个不同的零点,利用导数求得极值, 故 且 , 且 , 设 利用导数性质能证明 ,所以 .()有三个不同的零点,设 , ,则转化为 有三个不同的根, 在三个不同的零点,且,推导出要证明结论,只需证明 ,由此能证明 基础梳理1函数的极值(1)函数的极小值函数yf(x)在点xa的函数值f(a)比它在点xa附近其他点的函数值都小,f(a)0;而且在点xa附近的左侧f(x)0,则a叫做函数yf(x)的极小值点,f(a

5、)叫做函数yf(x)的极小值(2)函数的极大值函数yf(x)在点xb的函数值f(b)比它在点xb附近其他点的函数值都大,f(b)0;而且在点xb附近的左侧f(x)0,右侧f(x)0,x10f(x)0,f(x)单调递减;当x(3,1)时,y0,x10,f(x)单调递增;当x(1,3)时,y0,x10f(x)0,f(x)单调递增;当x(3,)时,y0f(x)0,f(x)单调递减所以函数有极小值f(3)和极大值f(3)2(2022大庆模拟)函数f(x)x3ax2bxa2在x1处取得极值10,则ab等于()A7 B0C7或0 D15或6【答案】A【解析】由题意知,函数f(x)x3ax2bxa2,可得f

6、(x)3x22axb,因为f(x)在x1处取得极值10,可得解得或检验知,当a3,b3时,可得f(x)3x26x33(x1)20,此时函数f(x)单调递增,函数无极值点,不符合题意;当a4,b11时,可得f(x)3x28x11(3x11)(x1),当x1时,f(x)0,f(x)单调递增;当x1时,f(x)0,f(x)单调递减,当x1时,函数f(x)取得极小值,符合题意所以ab7.考点二利用导数求函数最值【方法总结】(1)求函数f(x)在闭区间a,b上的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值(2)若所给的闭区间a,b含参数,则需

7、对函数f(x)求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f(x)的最值3已知函数g(x)aln xx2(a2)x(aR)(1)若a1,求g(x)在区间1,e上的最大值;(2)求g(x)在区间1,e上的最小值h(a)【答案】(1)a1,g(x)ln xx23x,g(x)2x3,x1,e,g(x)0,g(x)在1,e上单调递增,g(x)maxg(e)e23e1.(2)g(x)的定义域为(0,),g(x)2x(a2).当1,即a2时,g(x)在1,e上单调递增,h(a)g(1)a1;当1e,即2a0,且r0,可得0r0,故V(r)在(0,5)上单调递增;当r(5,5)时,V(r)0),(x)=11+x+1(1+x)2-20,(x)单调递减,则,另一方面当时,单调递减,且根据零点存在性定理,存在唯一的,有由,可得:所以时,由上面已证:当,即,进一步可得,故则综上,若为的极值点,一定有【解析】(1)根据导数的性质,结合极值的定义进行求解即可得 极值;(2)根据(1)的结论、函数极值的定义,结合构造函数法、零点存在原理、导数的性质,运用分类讨论思想进行证明即可.学科网(北京)股份有限公司