ImageVerifierCode 换一换
格式:PPT , 页数:11 ,大小:298.47KB ,
资源ID:218475      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-218475.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.4.2.3用向量方法解决立体几何问题的综合应用ppt课件-2022年秋高二上学期数学人教A版(2019)选择性必修第一册)为本站会员(吹**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.4.2.3用向量方法解决立体几何问题的综合应用ppt课件-2022年秋高二上学期数学人教A版(2019)选择性必修第一册

1、nnnnn nnnnn1212121212coscos, 面面面面角角: u nu nu nununsincos, 线线面面角角: u vu vu vuvuvcoscos, 线线线线角角: 复习回顾 (0,2 0,2 0,2 思考:二面角与平面的夹角范围一样吗? 直接引入 前面我们学习了如何用向量方法求解立体几何中的距离和角度问题.这节课我们应用这些知识解决综合性较强的问题. 下面先看一道生活中的实际问题,思考如何转化为数学问题来进行解决. 例9 下图为某种礼物降落伞的示意图,其中有8根绳子和伞面连接,每根绳子和水平面的法向量的夹角均为30,已知礼物的质量为1 kg,每根绳子的拉力大小相同求降

2、落伞在匀速下落的过程中每根绳子拉力的大小(重力加速度g取9.8 m/s2,精确到0.01 N) 思考下列问题: 1.降落伞匀速下落,下落过程中,8根绳子拉力的合力大小与礼物重力大小有什么关系? 2.每根绳子的拉力和合力有什么关系? 3.如何用向量方法解决这个问题? 典例分析 8根绳子的拉力在水平面的法向量方向上的投影向量的和向量与礼物的重力是一对相反向量 nFnF32F nnFn FFnF n,.3,30 ,.2 解解: 如如图图 设设水水平平面面的的单单位位法法向向量量为为其其中中每每一一根根绳绳子子的的拉拉力力均均为为因因为为所所以以 在在 上上的的投投影影向向量量为为3884 32FF

3、nF n合合所所以以 根根绳绳子子拉拉力力的的合合力力,=1 9.89.8(N).FG 合合礼礼物物又又因因为为降降落落伞伞匀匀速速下下落落所所以以F nF4 3 |9.8,9.81.41(N).4 3 所所以以所所以以A B C D E F G P z x y PABCDABCDPDABCD PDDC EPCEFPBPCPAFPBEFDCPBPBDEDB/;(2),.(1);(3)10. 如如图图 在在四四棱棱锥锥中中 底底面面是是正正方方形形 侧侧棱棱底底面面是是的的中中点点 作作交交于于点点求求证证:平平面面求求平平面面求求平平面面与与平平面面的的证证:夹夹角角的的大大小小例例分析: 本

4、题涉及的问题包括:直线与平面平行和垂直的判定,计算两个平面的夹角,这些问题都可以利用向量方法解决由于四棱锥的底面是正方形,而且一条侧棱垂直于底面,可以利用这些条件建立适当的空间直角坐标系,用向量及坐标表示问题中的几何元素,进而解决问题 典例分析 DDA DC DPxyzDC,1. 解解: 以以 为为原原点点所所在在直直线线分分别别为为 轴轴、 轴轴、 轴轴建建立立如如图图所所示示的的空空间间直直角角坐坐标标系系 设设ACBDGEGAPE(1),.1 1(1,0,0),(0,0,1),0,.2 2证证明明:连连接接交交于于点点连连接接依依题题意意得得PAEGPAABCDGGEGPAEG11(1,

5、0, 1),0,2,1 1,02 222,/. 且且所所因因为为底底面面是是正正方方形形 所所以以点点即即是是它它的的中中心心,以以,/.EGEDBPAEDBPAEDB而而平平面面且且平平面面因因此此平平面面A B C D E F G P z x y A B C D E F G P z x y (2);PBEFD 平平面面求求证证:BPB(1,1,0),(1,1, 1)解解:依依题题意意得得,.EFPBEFDEEPBEFD 由由已已知知且且所所以以平平面面DEPB DEPBDE1 10,2 21100.22 又又故故, 所所以以(3)CPBPBD与与平平面面的的夹夹角角求求平平面面的的大大小小

6、. .PBEFPBDFEFDCPBPBD ,(2),.解解:已已知知由由可可知知故故是是平平面面与与平平面面的的夹夹角角,( , ,1)(1,1, 1)( , ,),1,PFkPBx y zkk kkxk yk zk 因因为为所所以以即即PB DFk kkkkkkkF0,(1,1, 1) ( , ,1)1310,11 1 2,.33 3 3 设设则则所所以以点点 的的坐坐标标为为Fx y zPFx y z( , , ),( , ,1).设设点点 的的坐坐标标为为则则A B C D E F G P z x y 1 11 110,.2 23 66EFE 又又点点 的的坐坐标标为为所所以以1 111

7、12,13 66333cos.26663FE FDEFDFEFD 所所以以60 ,60 .EFDCPBPBD所所以以即即平平面面与与平平面面的的夹夹角角大大小小为为 用空间向量表示立体图形中点、直线、平面等元素 进行空间向量的运算,研究点、直线、平面之间的关系 把 运 算 结 果“翻译”成相应的几何意义 1.通过本节的学习,向量方法解决立体几何问题的基本步骤是什么?你能用框图表示吗? 课堂小结 2.解决立体几何中的问题,可用三种方法:综合法、向量法、坐标法你能说出它们各自的特点吗? 综合法综合法以以逻辑推理逻辑推理作为工具解决问题;作为工具解决问题;向量法向量法利用利用向量的概念及其向量的概念及其运算运算解决问题,如本节的例解决问题,如本节的例7、例、例9;坐标法坐标法利用利用数及其运算数及其运算来解决问题,来解决问题,坐标法经常与向量法结合起来使用坐标法经常与向量法结合起来使用,如本节的例,如本节的例6,例,例8,例,例10对于具对于具体的问题,应根据它的条件和所求选择合适的方法体的问题,应根据它的条件和所求选择合适的方法