ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:67.49KB ,
资源ID:206256      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-206256.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.1集合的概念 教学设计1)为本站会员(N***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.1集合的概念 教学设计1

1、第一章第一章 集合与常用逻辑用语集合与常用逻辑用语 第第 1 节节 集合的概念集合的概念 本课是本节的第一课,也是同学们刚进入高中阶段的第一课.常言道“良好的开端是成功的一半”.本课主要是让学生从已有的集合知识和实际生活中的例子入手,体会集合的含义.集合作为一种基本的数学语言,学习并掌握它的最好方法是使用.因此,教学中要多引导学生使用集合语言描述对象,进行自然语言与集合语言间的转换. 养成良好的数学习惯。 集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换,

2、初步运用集合的观点和思想来分析数学,解决简单的数学问题. 课程目标课程目标 学科素养学科素养 A.通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择集合不同的语言形式描述具体的问题. B.了解集合元素的确定性、互异性、无序性,掌握常用数集及其专用符号,并能够用其解决有关问题. C.会用集合语言表示有关数学对象:描述法,列举法。 1.数学抽象:集合的含义; 2.逻辑推理:选择集合不同的语言形式描述具体的问题; 3.数学运算:由集合与元素之间的关系求值; 4.直观想象: 在理解集合含义及特性过程中, 运用元素分析法分析集合问题,提高学生分析问题和解决问题的能力。 1.教学重点:集合的含义

3、与表示方法,元素与集合的关系; 2.教学难点:选择恰当的方法表示一些简单的集合。 多媒体 教学过程 教学设计意图 核心素养目标 一、情景引入,温故知新 情景 1:集合论诞生于 19 世纪末,其创始人是康托尔(1829-1920,德国数学家) 。 集合论被誉为 20 世纪最伟大的数学创造, 它的出现大大扩充了数学的研究领域,可以说,集合论是整个数学大厦的基础,它不仅影响了现代数学,而且也深深影响了现代哲学和逻辑学。 情景 2:高一开学第二天,学校通知:上午 8 点, 在学校体育馆举行军训动员大会. 问题:这个通知的对象是全体高一学生还是个别对象? 高一学生全体 初中阶段,我们学习过哪些集合? 代

4、数方面: 自然数集合, 有理数集合, 实数集合, 方程解的集合,不等式解的集合; 几何方面:点的集合等 在初中学习中,我们用集合描述过什么? 圆的概念:平面内到一个定点的距离等于定长的点的集合 二、探索新知 探究一 集合的含义 1.考察下列问题: (1)120 以内的所有偶数; (2)立德中学今年入学的全体高一学生; (3)所有正方形; (4)到直线 l 的距离等于定长 d 的所有的点; (5)方程0232 xx的所有实数根; (6)地球上的四大洋。 思考: 上述每个问题都由若干个对象组成,每组对象的全体都能组成集合吗?我们把研究的对象统称为元素,元素分别是什么? 2、归纳新知 (1)集合的含

5、义 通过初中所学及实例,让学生感知、了解,进而概括出元素与集合的含义.提高学生用数学抽象的思维方式思考并解决问题的能力。 一般地,我们把研究对象统称为元素(element) ,把一些元素组成的总体叫做集合(set)(简称集). (2)集合与元素的表示 通常用大写拉丁字母 A,B,C,表示集合,用小写拉丁字母a,b,c,表示集合中的元素. 探究二 集合中元素的性质 1. 所有的“帅哥”能否构成一个集合?由此说明什么? 不能. 其中的元素不确定 集合中的元素是确定的 2. 由 1,3,0,5,-3 这些数组成的一个集合中有 5 个元素, 这种说法正确吗? 不正确.集合中只有 4 个不同元素 1,3

6、,0,5 . 集合中的元素是互异的 3.高一(5)班的全体同学组成一个集合,调整座位后这个集合有没有变化? 集合没有变化 集合中的元素是没有顺序的 归纳总结:通过以上的学习你能给出集合中元素的特性吗? 确定性、互异性、无序性 4.两个集合中,元素完全一样,则称两集合相等. 练习 1:判断以下元素的全体是否组成集合,并说明理由: (1) 大于 3 小于 11 的偶数; (2) 我国的小河流. 【解析】 (1)是由 4,6,8,10 四个元素组成的集合. (2)由集合元素的确定性知其不能组成集合. 探究三: 元素和集合的关系 1.已知下面的两个实例: (1)用 A 表示高一(3)班全体学生组成的集

7、合. (2)用 a 表示高一(3)班的一位同学,b 表示高一(4)班的一位同学. 思考:那么 a,b 与集合 A 分别有什么关系? 【解析】a 是集合 A 中的元素,b 不是集合 A 中的元素. 用数学语言表示集合和元素。 通过具体的例子推理出元素的性质,教会学生解决和研究问题。 设计意图:集合是一个原始的、不定义的概念,只是对集合进行描述性说明.在开始接触集合的时候,主要通过实例,让学生感知、了解,进而概括出元素与集合的含义.提高学生用数学抽象的思维方式思考并解决问题的能力。元素、集合的字母表示,以及元素与集合的“属于”或“不属于”关系,建议在运用中逐渐熟悉. 2.元素与集合的“属于”关系

8、如果 a 是集合 A 中的元素,就说 a 属于集合 A,记作 aA;如果 a 不是集合 A 中的元素,就说 a 不属于集合 A,记作 aA. 常用数集及其记法:非负整数(自然数集)N、正整数集 N*或 N、整数集 Z、有理数集 Q、实数集 R. 练习 2. 用符号“”或“”填空. (1)2 N;(2)2_Q;(3)0 0; (4)b a,b,c. 【答案】(1) (2) (3) (4) 探究四 集合的表示方法 1.列举法 思考 1:地球上的四大洋组成的集合如何表示? 【提示】可以这样表示: 太平洋,大西洋,印度洋,北冰洋. 思考 2: 方程 (x+1)(x+2)=0 的所有根组成的集合, 又如

9、何用列举法表示呢? 【提示】 -1,-2 问题:通过思考以上问题大家能总结归纳出列举法的概念吗? 把集合的元素一一列举出来, 并用花括号“ ” 括起来表示集合的方法叫做列举法. 注意:大括号不能缺失,元素中间用逗号隔开; 元素按一定的顺序列举,如:从小到大等。 思考 3:a 与a有什么区别? 【答案】a 是一个元素,a是集合。 例 1 用列举法表示下列集合: (1)小于 10 的所有自然数组成的集合. (2)方程 x2=x 的所有实数根组成的集合. 解: (1)设小于 10 的所有自然数组成的集合为 A, 那么A=0,1,2,3,4,5,6,7,8,9. (2)设方程 x2=x 的所有实数根组

10、成的集合为 B,那么 B=1,0. 注意:由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合可以有不同的列举方法.例如, 例 1(1)可以表示为 A=9,8,7,6,5,4,3,2,1,0; 用列举法表示集合时,最好按一定的顺序列举元素。 通过练习巩固元素的性质,提高学生解决问题的能力。 集合的两种主要表示法,都通过学生对实例或问题的思考,去体验知识方法.不仅要让学生明白用列举法是集合最基本、最原始的表示方法,还要理解到集合中元素的列举与元素的顺序无关.通过问题的思考,学生认识到仅用列举法表示集合是不够的,有些集合是列举不完或者列举不出来的,由此说明学习描述法的必要性.学习描述法时,

11、先用自然语言表示集合元素具有的共同属性,再介绍用描述法的具体2. 描述法 思考: 能否用列举法表示不等式 x37 的解集?该集合中的元素有什么性质? 【解析】不能。但是可以看出,这个集合中的元素满足性质: (1) 集合中的元素都小于 10.(2) 集合中的元素都是实数 这个集合可以通过描述其元素性质的方法来表示, 写作: 10,.xxxR 思考:所有奇数的集合怎么表示?偶数的集合怎样表示? 有理数集怎么表示呢?奇数集、偶数集表示方法是否唯一? , 12|ZkkxZx ,或|21,xZ xkkZ ; ,2|ZkkxZx 0,|pZqppqxRxQ 问题:通过思考以上问题大家能总结归纳出描述法的概

12、念吗? 在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所含元素的共同特征表示集合的方法叫做描述法.如:)(|xpAx或)(xpAx:或)(xpAx;。 注意:在不致混淆的情况下,描述法也可以简写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可 以表示为x|x 是直角三角形,也可以写成直角三角形. 例 2 试分别用列举法和描述法表示下列集合. (1)方程 x2-2=0 的所有实数根组成的集合. (2)由大于 10 小于 20 的所有整数组成的集合. 解:(1)设方程 x2-2=0 的实

13、数根为 x,并且满足条件 x2-2=0,因此,用描述法表示为 A=xR|x2-2=0. 方程 x2-2=0 有两个实数根为22 ,因此,用列举法表示为A=22 ,. (2)设大于 10 小于 20 的整数为 x,它满足条件 xZ,且 10 x20,因此,用描述法表示为 方法. 学生通过对实例或问题的思考,去体验知识方法。发现并提出数学问题,应用数学语言予以表达。 B=xZ10 x20. 大于 10 小于 20 的整数有 11,12,13,14,15,16,17, 18,19,因此,用列举法表示为 B=11,12,13,14,15,16,17,18,19. 思考:自然语言、列举法和描述法表示集合

14、时,各自的特点和适用对象? 自然语言描述集合简单易懂、 生活化; 列举法的特点每个元素一一列举出来, 非常直观明显的表示元素, 当元素有限或者元素有规律性的时候, 是常采用的方法; 描述法表示的集合中元素具有明显的共同特征,集合中的元素基本是无限的,这是比较常用的集合表示法. 三、达标检测 1下列对象不能构成集合的是( ) 我国近代著名的数学家; 所有的欧盟成员国; 空气中密度大的气体 A B C D 【解析】 研究一组对象能否构成集合的问题, 首先要考查集合中元素的确定性中的“著名”没有明确的界限;中的研究对象显然符合确定性;中“密度大”没有明确的界限故选 D. 【答案】 D 2下列三个关系

15、式: 5R;14Q;0Z.其中正确的个数是( ) A1 B2 C3 D0 【解析】 正确;因为14Q,错误;0Z,正确 【答案】 B 3.a,b,c,d 为集合 A 的四个元素,那么以 a,b,c,d 为边长构成的四边形可能是( ) A矩形 B平行四边形 C菱形 D梯形 【解析】 由于集合中的元素具有“互异性”,故 a,b,c,d 四个元素互不相同,即组成四边形的四条边互不相等. 【答案】 D 4.设集合 Ax|x23xa0,若 4A,则集合 A 用列举法表示为_. 【解析】 4A,1612a0, 通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。

16、a4, Ax|x23x401,4 【答案】 1,4 5用适当的方法表示下列集合: (1)方程组 2x3y143x2y8的解集; (2)所有的正方形; (3)抛物线 yx2上的所有点组成的集合 【解】 (1)解方程组 2x3y143x2y8,得 x4y2, 故解集为(4,2) (2)集合用描述法表示为x|x 是正方形,简写为正方形 (3)集合用描述法表示为(x,y)|yx2 四、小结 1.集合的概念 2.集合元素的三个特征: 3.常见数集的专用符号 4.集合的表示方法 五、作业 习题 1.1 1,2 题 通过总结,让学生进一步巩固集合与元素的含义与性质,集合的表示方法,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。