ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:101.81KB ,
资源ID:206117      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-206117.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(4.3.1对数的概念 教学设计1)为本站会员(N***)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

4.3.1对数的概念 教学设计1

1、 第四章第四章 指数函数与对数函数指数函数与对数函数 4.3.1 对数的概念对数的概念 本节课是新版教材人教 A 版普通高中课程标准实验教科书数学必修 1 第四章第 4.3.1 节对数的概念 。 从内容上看它是学生了指数幂运算的基础上, 通过实际问题的提出, 从而建立对数的概念。其研究和学习过程,与先前学习加法与减法、乘法与除法类似。由指数运算进而提出对数运算,本节为后续的对数函数奠定基础。培养学生数学运算、数学抽象、逻辑推理和数学建模的核心素养。 课程目标 学科素养 1、理解对数的概念,能进行指数式与对数式的互化; 2、了解常用对数与自然对数的意义,理解对数恒等式并能运用于有关对数计算。 3

2、、通过转化思想方法的运用,培养学生转化的思想观念及逻辑思维能力。 a.数学抽象:对数的概念; b.逻辑推理:指数式与对数式的转化; c.数学运算:对数的运算; d.直观想象:指数与对数的关系; e.数学建模:在实际问题中建立对数概念; 教学重点:对数的概念、指数式与对数的互化 教学难点:由于对数符号是直接引入的,带有“规定”的性质,且这种符号比较抽象,不易为学生 接受,因此,对对数符号的认识会形成教学中的难点。 多媒体 教学过程 设计意图 核心教学素养目标 (一) 、创设创设问题情境问题情境 问题提出:在 4.2.1 的问题 1 中,通过指数幂运算,我们能从 y1.11x中求出经过 4 年后地

3、景区的游客人次为 2001 年的倍数 y反之,如果要求经过多少年游客人次是 2001 年的 2 倍,3 倍,4 倍,那么该如何解决? 上述问题实际上就是从 2=1.11x ,3=1.11x , 4=1.11x , 中分别求出 x,即已知底数和幂的值,求指数这是本节要学习的对数 对数的发明:对数的创始人是苏格兰数学家纳皮尔(Napier,1550 年1617 年)。他发明了供天文计算作参考的对数,并于 1614 年在爱丁堡出版了奇妙的对数定律说明书,公布了他的发明。恩格斯把对数的发明与解析几何的创始,微积分的建立并称为 17 世纪数学的三大成就。 (二) 、探索新知(二) 、探索新知 1对数 (

4、1)指数式与对数式的互化及有关概念: (2)底数 a 的范围是_. 2常用对数与自然对数 3对数的基本性质 (1)负数和零没有对数 (2)loga 10(a0, 且 a1) (3)logaa1(a0, 且 a1) 思考:为什么零和负数没有对数? 提示 由对数的定义:axN(a0 且 a1),则总有 N0,所以转化为对数式 xlogaN 时, 不存在 N0 的情况 1思考辨析 (1)logaN 是 loga与 N 的乘积( ) (2)(2)38 可化为 log(2)(8)3.( ) (3)对数运算的实质是求幂指数( ) 答案 (1) (2) (3) 2若 a2M(a0 且 a1),则有( ) A

5、log2Ma BlogaM2 开门见山, 通过对上节问题的提问和引伸,提出新问题,从而引出对数的概念。培养和发展逻辑推理和数学运算的核心素养。 通过对对数概念的解析,理解对数与指数的关系,进而理解对数的概念,发展学生数学抽象、数学建模和逻辑推理等核心素养; Clog22M Dlog2aM B a2M,logaM2,故选 B. (三)典例解析(三)典例解析 例 1 将下列指数形式化为对数形式,对数形式化为指数形式: (1) 54625; (2)271128; (3) ( 12)m5.73 (4)log12325;(5)lg 1 0003; (6)ln 102.303 解 (1) 由 54625,

6、可得 log56254. (2)由 271128,可得 log211287. (3) 由( 12)m5.73 ,可得 log12 5.73m, (4)由 log12 325,可得12532. (5)由 lg 1 0003,可得 1031 000. (6)由 ln 102.303,可得 e2.30310. 规律方法 指数式与对数式互化的方法 将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式; 将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式; 1将下列指数式化为对数式,对数式化为指数式: (1)3219; (2)14216;(3)log1327

7、3; (4)logx646. 解 (1)log3192;(2)log14 162; (3)13327;(4)( x)664. 例 2 求下列各式中的 x 的值: (1)log64x23; (2)logx 86; (3)lg 100 x; (4)ln e2x. 解 (1)x(64)23(43)2342116. (2)x68,所以 x(x6)16816(23) 16212 2. (3)10 x100102,于是 x2. (4)由ln e2x,得xln e2,即 exe2, 所以 x2. 规律方法:要求对数的值,设对数为某一未知数,将对数式化为指数式, 通过典例问题的分析,让学生进一步熟悉指数式与对

8、数式的转化。深化对对数概念的理解。 通过问题探究进一步理解对数的概念,并推出对数的相关性再利用指数幂的运算性质求解。 探究问题 1你能推出对数恒等式 alogaNN(a0 且 a1,N 0)吗? 提示:因为 axN,所以 xlogaN,代入 axN 可得 alogaNN. 2如何解方程 log4(log3x)0? 提示:借助对数的性质求解,由 log4(log3x)log41,得 log3x1,x3. 例 3 设 5log5(2x1)25,则 x 的值等于( ) A10 B13 C100 D 100 (2)若 log3(lg x)0,则 x 的值等于_. 思路探究:(1)利用对数恒等式 alo

9、gaNN 求解; (2)利用 logaa1,loga10 求解 (1)B (2)10 (1)由 5log5(2x1)25 得 2x125,所以 x13,故选 B. (2)由 log3(lg x)0 得 lg x1,x10. 归纳总结:1.利用对数性质求解的 2 类问题的解法 (1)求多重对数式的值解题方法是由内到外,如求 logalogbc的值,先求 logbc 的值, 再求 logalogbc的值. (2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解. 2.性质 alogaNN 与 logaabb 的作用 (1)alogaNN 的作用在于能把任意一个正实数转化为以

10、a,为底的指数形式. (2)logaabb 的作用在于能把以 a 为底的指数转化为一个实数 质,发展学生数学运算和逻辑推理核心素养; 三、当堂达标 1在 blog3(m1)中,实数 m 的取值范围是( ) AR B(0,) C(,1) D(1,) 【答案】D 由 m10 得 m1,故选 D. 2下列指数式与对数式互化不正确的一组是( ) A1001 与 lg 10 B271313与 log271313 Clog392 与 9123 Dlog551 与 515 【答案】C C 不正确,由 log392 可得 329. 通过练习巩固本节所学知识,巩固对数的概念及其性质,增强学生的数学抽象、数学运算

11、、逻辑推理的核心素养。 3若 log2(logx9)1,则 x_. 【答案】3 由 log2(logx9)1 可知 logx92,即 x29,x3(x3 舍去) 4 log333log32_. 【答案】3 log333log32123. 5求下列各式中的 x 值: (1)logx2732; (2)log2 x23; (3)xlog2719; (4)xlog1216. 【答案】(1)由 logx2732,可得 x3227, x2723(33)23329. (2)由 log2x23,可得 x223,x1223314322. (3)由 xlog2719,可得 27x19,33x32,x23. (4)由 xlog1216,可得12x16,2x24,x4. 四、小结 1、对数的概念,指数式与对数式的转化; 2、对数的性质及运用; 五、作业 1. 课时练 2. 预习下节课内容 学生根据课堂学习,自主总结知识要点,及运用的思想方法。注意总结自己在学习中的易错点;