ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:127.89KB ,
资源ID:179188      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-179188.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021年高中数学选修4-5全册知识点总结)为本站会员(争先)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2021年高中数学选修4-5全册知识点总结

1、高中数学选修高中数学选修 4-5 知识点知识点 1、不等式的基本性质 (对称性)a bba (传递性) ,ab bcac (可加性)a bacb c (同向可加性) dbcadcba, (异向可减性) dbcadcba, (可积性) bcaccba0, bcaccba0, (同向正数可乘性) 0,0abcdacbd (异向正数可除性) 0,0 ab abcd cd (平方法则) 0(,1) nn abab nNn且 (开方法则) 0(,1) nn abab nNn且 (倒数法则) ba ba ba ba 11 0; 11 0 2、几个重要不等式 22 2abab abR, ,(当且仅当a b

2、时取 号). 变形公式: 22 . 2 ab ab (基本不等式) 2 ab ab abR, ,(当且仅当a b 时取到等号). 变形公式: 2aba b 2 . 2 ab ab 用基本不等式求最值时(积定和最小,和定积最大) ,要注意满足三个条件“一正、二定、三 相等”. (三个正数的算术几何平均不等式) 3 3 abc abc ()abcR、 、 (当且仅当a bc 时 取到等号). 222 abcabbcca abR, (当且仅当a bc 时取到等号). 333 3(0,0,0)abcabc abc (当且仅当a bc 时取到等号). 0,2 ba ab ab 若则 (当仅当 a=b 时

3、取等号) 0,2 ba ab ab 若则 (当仅当 a=b 时取等号) b a nb na ma mb a b 1 , (其中 000)abmn, 规律:小于 1 同加则变大,大于 1 同加则变小. 22 0;axaxaxaxa当时,或 22 .xaxaaxa 绝对值三角不等式 .ababab 3、几个著名不等式 平均不等式: 22 11 2 22 abab ab ab , , a bR( ,当且仅当a b 时取 号). (即调和平均几何平均算术平均平方平均). 变形公式: 2 22 ; 22 abab ab 2 22 () . 2 ab ab 幂平均不等式: 2222 1212 1 .(.)

4、 . nn aaaaaa n 二维形式的三角不等式: 222222 11221212 ()()xyxyxxyy 1122 ( ,).x y xyR 二维形式的柯西不等式: 22222 ()()() ( , , ,).abcdacbda b c dR 当且仅当ad bc 时,等号成立. 三维形式的柯西不等式: 2222222 1231231 1223 3 ()()() .aaabbbaba ba b 一般形式的柯西不等式: 222222 1212 (.)(.) nn aaabbb 2 1 122 (.) . nn aba ba b 向量形式的柯西不等式: 设 , 是两个向量,则 , 当且仅当 是

5、零向量,或存在实数k,使 k 时,等 号成立. 排序不等式(排序原理) : 设 1212 .,. nn aaa bbb 为 两 组 实 数 . 12 ,., n c cc 是 12 ,., n b bb 的 任 一 排 列 , 则 12111 12 2 . nnnn n aba ba baca ca c 1 12 2 . nn aba ba b (反序和乱序和顺序和) , 当且仅当 12 . n aaa 或 12 . n bbb 时,反序和等于顺序和. 琴生不等式:(特例:凸函数、凹函数) 若定义在某区间上的函数 ( )f x ,对于定义域中任意两点 1212 ,(),x x xx 有 121

6、21212 ()()()() ()(). 2222 xxf xf xxxf xf x ff 或 则称 f(x)为凸(或凹)函数. 4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法) 、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: 舍去或加上一些项,如 22 131 ()() ; 242 aa 将分子或分母放大(缩小) , 如 2 11 , (1)kk k 2 11 , (1)kk k 2212 , 21kkkkkk * 12 (,1) 1 kNk kkk 等. 5、一元二次不等式的解法 求一元二次不等式 2 0

7、(0)axbxc或 2 (0,40)abac 解集的步骤: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边. 6、高次不等式的解法:穿根法. 分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切) ,结合原式不等号的方向,写 出不等式的解集. 7、分式不等式的解法:先移项通分标准化,则 ( ) 0( )( )0 ( ) ( )( )0 ( ) 0 ( )0( ) f x f xg x g x f xg x f x g xg x ( “ 或 ” 时

8、同理) 规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解 2 ( )0 ( )(0) ( ) f x f xa a f xa 2 ( )0 ( )(0) ( ) f x f xa a f xa 2 ( )0 ( )0 ( )( )( )0 ( )0 ( ) ( ) f x f x f xg xg x g x f xg x 或 2 ( )0 ( )( )( )0 ( ) ( ) f x f xg xg x f xg x ( )0 ( )( )( )0 ( )( ) f x f xg xg x f xg x 规律:把无理不等式等价转化为有理不等式,诀窍在于从

9、“小”的一边分析求解. 9、指数不等式的解法: 当 1a 时, ( )( ) ( )( ) f xg x aaf xg x 当0 1a 时, ( )( ) ( )( ) f xg x aaf xg x 规律:根据指数函数的性质转化. 10、对数不等式的解法 当 1a 时, ( )0 log( )log( )( )0 ( )( ) aa f x f xg xg x f xg x 当0 1a 时, ( )0 log( )log( )( )0. ( )( ) aa f x f xg xg x f xg x 规律:根据对数函数的性质转化. 11、含绝对值不等式的解法: 定义法: (0). (0) aa

10、 a aa 平方法: 22 ( )( )( )( ).f xg xfxgx 同解变形法,其同解定理有: (0);xaaxa a (0);xaxaxa a或 ( )( )( )( )( ) ( ( )0)f xg xg xf xg xg x ( )( )( )( )( )( ) ( ( )0)f xg xf xg xf xg xg x 或 规律:关键是去掉绝对值的符号. 12、含有两个(或两个以上)绝对值的不等式的解法: 规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法 解形如 2 0axbxc 且含参数的不等式时,要对参数进行分类讨论,分类讨

11、论的标准有: 讨论a与 0 的大小; 讨论与 0 的大小; 讨论两根的大小. 14、恒成立问题 不等式 2 0axbxc 的解集是全体实数(或恒成立)的条件是: 当 0a 时 0,0;bc 当 0a 时 0 0. a 不等式 2 0axbxc 的解集是全体实数(或恒成立)的条件是: 当 0a 时 0,0;bc 当 0a 时 0 0. a ( )f xa 恒成立 max ( );f xa ( )f xa 恒成立 max ( );f xa ( )f xa 恒成立 min ( );f xa ( )f xa 恒成立 min ( ).f xa 15、线性规划问题 二元一次不等式所表示的平面区域的判断:

12、法一:取点定域法: 由于直线 0AxByC 的同一侧的所有点的坐标代入 AxByC 后所得的实数的符号相同. 所以, 在实际判断时, 往往只需在直线某一侧任取一特殊点 00 (,)xy (如原点) , 由 00 AxByC 的正负即可判断出 0AxByC( 或 0) 表示直线哪一侧的平面区域. 即:直线定边界,分清虚实;选点定区域,常选原点. 法二:根据 0AxByC( 或 0) ,观察B的符号与不等式开口的符号,若同号, 0AxByC( 或 0) 表示直线上方的区域; 若异号, 则表示直线上方的区域.即: 同号上方, 异号下方. 二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各

13、个不等式所表示的平面区域的公共部分. 利用线性规划求目标函数 zAxBy( ,A B 为常数)的最值: 法一:角点法: 如果目标函数 zAxBy ( xy、 即为公共区域中点的横坐标和纵坐标)的最值存在,则这些 最值都在该公共区域的边界角点处取得, 将这些角点的坐标代入目标函数, 得到一组对应z值, 最大的那个数为目标函数z的最大值,最小的那个数为目标函数z的最小值 法二:画移定求: 第一步,在平面直角坐标系中画出可行域;第二步,作直线 0: 0lAxBy ,平移直线 0 l (据 可行域,将直线 0 l 平行移动)确定最优解;第三步,求出最优解( , ) x y ;第四步,将最优解( , )

14、 x y 代入目标函数 zAxBy 即可求出最大值或最小值 . 第二步中最优解的确定方法: 利用z的几何意义: Az yx BB , z B 为直线的纵截距. 若 0,B 则使目标函数 zAxBy 所表示直线的纵截距最大的角点处,z取得最大值,使直 线的纵截距最小的角点处,z取得最小值; 若 0,B 则使目标函数 zAxBy 所表示直线的纵截距最大的角点处,z取得最小值,使直 线的纵截距最小的角点处,z取得最大值. 常见的目标函数的类型: “截距”型: ;zAxBy “斜率”型: y z x 或 ; yb z xa “距离”型: 22 zxy 或 22; zxy 22 ()()zxayb 或 22 ()() .zxayb 在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题 简单化.