ImageVerifierCode 换一换
格式:DOC , 页数:46 ,大小:5.24MB ,
资源ID:163924      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-163924.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题01 因动点产生的面积问题-突破中考数学压轴之学霸秘笈大揭秘(教师版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

专题01 因动点产生的面积问题-突破中考数学压轴之学霸秘笈大揭秘(教师版)

1、 1 【类型综述】 面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题, 是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱 形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常 考的题型,此类问题计算量较大。有时也要根据题目的动点问题产生解的不确定性或多样性。解决这类问 题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法. 面积的存在性问题常见的 题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根二是先假设关 系存在,再列方程

2、,后根据方程的解验证假设是否正确 【方法揭秘】 解决动点产生的面积问题,常用到的知识和方法,如下: 如图 1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式 如图 2,图 3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补” 的方法 图 1 图 2 图 3 计算面积长用到的策略还有: 如图 4,同底等高三角形的面积相等平行线间的距离处处相等 如图 5,同底三角形的面积比等于高的比 如图 6,同高三角形的面积比等于底的比 2 图 4 图 5 图 6 【典例分析】 例 1 如图,抛物线 yax2bxc(a0)与 x 轴交于 A(

3、1, 0),B(4, 0)两点,与 y 轴交于点 C(0, 2)点 M(m, n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上过点 M 作 x 轴的平行线交 y 轴于点 Q, 交抛物线于另一点 E,直线 BM 交 y 轴于点 F (1)求抛物线的解析式,并写出其顶点坐标; (2)当 SMFQSMEB13 时,求点 M 的坐标 思路点拨思路点拨 1设交点式求抛物线的解析式比较简便 2把MFQ 和MEB 的底边分别看作 MQ 和 ME,分别求两个三角形高的比,底边的比(用含 m 的式 子表示) ,于是得到关于 m 的方程 3方程有两个解,慎重取舍解压轴题时,时常有这种“一石二鸟”的现象,列

4、一个方程,得到两个符 合条件的解 满分解答满分解答 (1)因为抛物线与 x 轴交于 A(1, 0),B(4, 0)两点,设 ya(x1)(x4) 代入点 C(0, 2),得 24a解得 1 2 a 所以 22 1131325 (1)(4)2() 222228 yxxxxx 顶点坐标为 3 25 () 28 , 3 考点伸展考点伸展 第(2)题 SMFQSMEB13,何需点 M 一定要在抛物线上? 从上面的解题过程可以看到,MFQ 与MEB 的高的比= 4 FQm MNm 与 n 无关,两条底边的比 = 32 MQm MEm 也与 n 无关 如图 3,因此只要点 E 与点 M 关于直线 x 3

5、2 对称,点 M 在直线的左侧,且点 M 不在坐标轴上,就存 在 SMFQSMEB13,点 M 的横坐标为 1(如图 3)或12(如图 4) 图 3 图 4 4 例 2 如图, 已知抛物线与坐标轴分别交于点、和点 , 动点 从原点 开始沿 方向以每秒 个单位长度移动,动点 从点 开始沿方向以每秒 个单位长度移动,动点 、 同时出发,当 动点 到达原点 时,点 、 停止运动 直接写出抛物线的解析式:_; 求的面积 与 点运动时间 的函数解析式;当 为何值时,的面积最大?最大面积是多少? 当的面积最大时,在抛物线上是否存在点 (点 除外) ,使的面积等于的最大面积? 若存在,求出 点的坐标;若不存

6、在,请说明理由 思路点拨思路点拨 (1)将点 A(0,8) 、B(8,0)代入抛物线 y=- x2+bx+c 即可求出抛物线的解析式为:y=- x2+3x+8; (2)根据题意得:当 D点运动 t秒时,BD=t,OC=t,然后由点 A(0,8) 、B(8,0) ,可得 OA=8,OB=8, 从而可得 OD=8-t,然后令 y=0,求出点 E 的坐标为(-2,0) ,进而可得 OE=2,DE=2+8-t=10-t,然后利用 三角形的面积公式即可求CED 的面积 S 与 D点运动时间 t的函数解析式为:S=- t2+5t,然后转化为顶点式 即可求出最值为:S最大=; 来源: (3)由(2)知:当

7、t=5 时,S最大=,进而可知:当 t=5 时,OC=5,OD=3,进而可得 CD= ,从而确 定 C(0,5) ,D(3,0)然后根据待定系数法求出直线 CD 的解析式为:y=- x+5,然后过 E点作 EFCD, 交抛物线与点 P,然后求出直线 EF的解析式,与抛物线联立方程组解得即可得到其中的一个点 P 的坐标, 然后利用面积法求出点 E到 CD 的距离为,然后过点 D 作 DNCD,垂足为 N,且使 DN=,然 后求出 N的坐标,然后过点 N 作 NHCD,与抛物线交与点 P,然后求出直线 NH的解析式,与抛物线联 立方程组求解即可得到其中的另两个点 P 的坐标 满分解答满分解答 5

8、例 3 如图,在平面直角坐标系中,直线 1 1 2 yx与抛物线 yax2bx3 交于 A、B 两点,点 A 在 x 轴上,点 B 的纵坐标为 3点 P 是直线 AB 下方的抛物线上的一动点(不与点 A、B 重合),过点 P 作 x 轴 的垂线交直线 AB 于点 C,作 PDAB 于点 D (1)求 a、b 及 sinACP 的值; (2)设点 P 的横坐标为 m 用含 m 的代数式表示线段 PD 的长,并求出线段 PD 长的最大值; 连结 PB,线段 PC 把PDB 分成两个三角形,是否存在适合的 m 的值,使这两个三角形的面积比为 910?若存在,直接写出 m 的值;若不存在,请说明理由

9、思路点拨思路点拨 1第(1)题由于 CP/y 轴,把ACP 转化为它的同位角 2第(2)题中,PDPCsinACP,第(1)题已经做好了铺垫 3PCD 与PCB 是同底边 PC 的两个三角形,面积比等于对应高 DN 与 BM 的比 4两个三角形的面积比为 910,要分两种情况讨论 满分解答满分解答 (1)设直线 1 1 2 yx与 y 轴交于点 E,那么 A(2,0),B(4,3),E(0,1) 在 RtAEO 中,OA2,OE1,所以5AE 所以 2 5 sin 5 AEO 因为 PC/EO,所以ACPAEO因此 2 5 sin 5 ACP 将 A(2,0)、B(4,3)分别代入 yax2b

10、x3,得 4230, 16433. ab ab 解得 1 2 a , 1 2 b 6 考点伸展考点伸展 第(3)题的思路是:PCD 与PCB 是同底边 PC 的两个三角形,面积比等于对应高 DN 与 BM 的比 而 2 52 511 coscos(4)(2)(4) 5525 DNPDPDNPDACPmmmm , BM4m 当 SPCDSPCB910 时, 19 (2)(4)(4) 510 mmm解得 5 2 m 当 SPCDSPCB109 时, 110 (2)(4)(4) 59 mmm解得 32 9 m 例 4 如图,已知二次函数的图象过点O(0,0)、A(4,0)、B( 4 3 2, 3 )

11、,M 是OA 的中点 (1)求此二次函数的解析式; (2)设 P 是抛物线上的一点,过 P 作 x 轴的平行线与抛物线交于另一点 Q,要使四边形 PQAM 是菱形, 求点P 的坐标; (3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线 OBA(B为 B 关于 x 轴的对称点) ,在原抛 物线 x 轴的上方部分取一点C,连结CM,CM 与翻折后的曲线OBA 交于点D,若CDA 的面积是MDA 面积 的2 倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由 7 思路点拨思路点拨 1设交点式或顶点式求抛物线的解析式都比较简便 2先确定四边形 PQAM 是平行四边形,再验证它是菱

12、形 3把CDA 与MDA 的面积比,转化为MCA 与MDA 的面积比,进而转化为点 C 与点 D 的纵坐标的 比 满分解答满分解答 (3)如图 3,作 CEx 轴于 E,作 DFx 轴于 F 我们把面积进行两次转换: 如果CDA 的面积是MDA 面积的2 倍,那么MCA 的面积是MDA 面积的3 倍 而MCA 与MDA 是同底三角形,所以高的比CEDF31,即 yCyD31 因此 MEMF31设 MFm,那么 ME3m 原抛物线的解析式为 3 (4) 3 yx x,所以翻折后的抛物线的解析式为 3 (4) 3 yx x 所以 D 3 (2,(2)(24) 3 mmm,C 3 (23 ,(23

13、)(234) 3 mmm 根据yCyD31,列方程 33 (23 )(234)3(2)(24) 33 mmmm 整理,得3m24解得 2 3 3 m 所以2322 3m 8 所以点 C 的坐标为 8 3 (22 3,) 3 (如图3) ,或 8 3 (22 3,) 3 (如图4) 图 2 图 3 图 4 考点伸展考点伸展 第(1)题可以设抛物线的顶点式: 由点O(0,0), A(4,0),B( 4 3 2, 3 )的坐标,可知点B 是抛物线的顶点 可设 2 4 3 (2) 3 ya x,代入点O(0,0),得 3 3 a 例例 5 如图,直线 l 经过点 A(1,0),且与双曲线 m y x

14、(x0)交于点 B(2,1)过点( ,1)P p p(p1)作 x 轴的平行线分别交曲线 m y x (x0)和 m y x (x0)于 M、N 两点 (1)求 m 的值及直线 l 的解析式; (2)若点 P 在直线 y2 上,求证:PMBPNA; (3)是否存在实数 p,使得 SAMN4SAMP?若存在,请求出所有满足条件的 p 的值;若不存在,请说 明理由 思路点拨思路点拨 1第(2)题准确画图,点的位置关系尽在图形中 2第(3)题把 SAMN4SAMP转化为 MN4MP,按照点 M 与线段 NP 的位置关系分两种情况讨论 满分解答满分解答 9 由 P(3,2)、N(1,2)、A(1,0)

15、三点的位置关系,可知PNA 为等腰直角三角形 所以PMBPNA 图 2 图 3 图 4 考点伸展考点伸展 在本题情景下,AMN 能否成为直角三角形? 情形一,如图 5,AMN90 ,此时点 M 的坐标为(1,2) ,点 P 的坐标为(3,2) 情形二,如图 6,MAN90 ,此时斜边 MN 上的中线等于斜边的一半 不存在ANM90 的情况 10 图 5 图 6 例例 6 如图 1,在ABC 中,C90 ,AC3,BC4,CD 是斜边 AB 上的高,点 E 在斜边 AB 上, 过点 E 作直线与ABC 的直角边相交于点 F,设 AEx,AEF 的面积为 y (1)求线段 AD 的长; (2)若

16、EFAB,当点 E 在斜边 AB 上移动时, 求 y 与 x 的函数关系式(写出自变量 x 的取值范围) ; 当 x 取何值时,y 有最大值?并求出最大值 (3)若点 F 在直角边 AC 上(点 F 与 A、C 不重合) ,点 E 在斜边 AB 上移动,试问,是否存在直线 EF 将ABC 的周长和面积同时平分?若存在直线 EF,求出 x 的值;若不存在直线 EF,请说明理由 图 1 备用图 思路点拨思路点拨 1第(1)题求得的 AD 的长,就是第(2)题分类讨论 x 的临界点 2第(2)题要按照点 F 的位置分两种情况讨论 3第(3)题的一般策略是:先假定平分周长,再列关于面积的方程,根据方程

17、的解的情况作出判断 满分解答满分解答 11 图 2 图 3 图 4 (3)ABC 的周长等于 12,面积等于 6 先假设 EF 平分ABC 的周长,那么 AEx,AF6x,x 的变化范围为 3x5因此 1142 sin(6)(6) 2255 AEF SAE AFAxxx x 解方程 2 (6)3 5 x x,得 1 36 2 x 来源: 因为 1 36 2 x 在 3x5 范围内(如图 4) ,因此存在直线 EF 将ABC 的周长和面积同时平分 考点伸展考点伸展 如果把第 (3) 题的条件“点F 在直角边 AC 上”改为“点F 在直角边 BC 上”, 那么就不存在直线 EF 将ABC 的周长和

18、面积同时平分 先假设 EF 平分ABC 的周长,那么 AEx,BE5x,BFx1 因此 2 1133 sin(5)(1)(45) 22510 BEF SBE BFBx xxx 12 解方程 2 3 (45)3 10 xx整理,得 2 450 xx 此方程无实数根 【变式训练】 1如图,点 A 是直线 y=x 上的动点,点 B 是 x 轴上的动点,若 AB=2,则AOB 面积的最大值为( ) A2 B+1 C-1 D2 【答案】B 【解析】 解:如图所示, 连接 OD,则 ODOC+CD, 当 O,C,D 在同一直线上时,OD的最大值为 OC+CD=+1, 来源:ZXXK 此时 ODAB, 13

19、 2如图,已知,以为圆心,长为半径作 , 是上一个动点,直线交 轴于 点, 则面积的最大值是( ) A B C D 【答案】B 【解析】 当直线 AN 与B 相切时,AOM 面积的最大 连接 AB、BN, 在 RtAOB 和 RtANB 中 RtAOBRtANB, AN=AO=2, 设 BM=x, 14 3如图,在中, ,动点 从点 开始沿向点 以的速度移动, 动点 从点 开始沿向点 以的速度移动.若 , 两点分别从 , 两点同时出发, 点到达 点运动停 止,则的面积 随出发时间 的函数关系图象大致是( ) A B C D 【答案】C 【解析】 15 点睛:此题主要考查了动点问题的函数图象,正

20、确得出函数关系式是解题关键 4如图,在中, ,动点 P 从点 B 开始沿边 BA、AC 向点 C 以 的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以的速度移动,设的面积为运动时间 为,则下列图象能反映 y 与 x 之间关系的是 A B C D 【答案】B 【解析】 当时,图象为开口向上的抛物线; 当时,如下图所示, 16 ,图象为开口向下的抛物线; 故选:B 5如图,在正方形ABCD中,3ABcm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时 动点N自D点出发沿折线DCCB以每秒2cm的速度运动,到达B点时运动同时停止,设AMN的面 积为 2 y cm,运动时间为x(秒

21、) ,则下列图象中能大致反映y与x之间的函数关系的是( ) A B C. D 【答案】A 【解析】 分两部分: 当 0 x1.5 时,如图 1,此时 N 在 DC 上,SAMN=y= 1 2 AMAD= 1 2 x 3= 3 2 x, 当 1.5x3 时,如图 2,此时 N 在 BC 上,DC+CN=2x,BN=62x,SAMN=y= 1 2 AMBN= 1 2 x(6 2x)=x2+3x,故选 A 考点:动点问题的函数图象 6如图,在矩形中,点 是边上的动点(点 不与点 ,点 重合) ,过点 作直 线,交边于 点,再把沿着动直线对折,点 的对应点是 点,设的长度为 ,与 17 矩形重叠部分的

22、面积为 (1)求的度数; (2)当 取何值时,点 落在矩形的边上? (3)求 与 之间的函数关系式; 当 取何值时,重叠部分的面积等于矩形面积的? 【答案】解: (1) (2) (3) 综上所述,当时,与矩形重叠部分的面积等于矩形面积的 【解析】 解: (1)如图,四边形是矩形, 又, , , , (2)如图 1, 18 (3)当点 在矩形的内部或边上时, , ,当时, 当 在矩形的外部时(如图 2) , 在中, , 又, 19 矩形面积,当时,函数随自变量的增大而增大,所以 的最大值是 ,而矩形面积的的值, 而,所以,当时, 的值不可能是矩形面积的; 当时,根据题意,得: ,解这个方程,得,

23、因为, 所以不合题意,舍去 所以 综上所述,当时,与矩形重叠部分的面积等于矩形面积的 7已知直角梯形 OABC 在如图所示的平面直角坐标系中,ABOC,AB=10,OC=22,BC=15,动点 M 从 A 点出发,以每秒一个单位长度的速度沿 AB 向点 B 运动,同时动点 N 从 C 点出发,以每秒 2 个单位长度 的速度沿 CO 向 O 点运动。当其中一个动点运动到终点时,两个动点都停止运动。 (1)求 B 点坐标; (2)设运动时间为 t 秒。 当 t 为何值时,四边形 OAMN 的面积是梯形 OABC 面积的一半; 当 t 为何值时,四边形 OAMN 的面积最小,并求出最小面积。 若另有

24、一动点 P,在点 M、N 运动的同时,也从点 A 出发沿 AO 运动。在的条件下,PMPN 的长度 也刚好最小,求动点 P 的速度。 20 【答案】解(1)作 BDOC 于 D,则四边形 OABD 是矩形, 设四边形 OAMN 的面积为 S,则 0t10,且 s 随 t 的增大面减小 当 t=10 时,s 最小,最小面积为 54。 如备用图,取 N 点关于 y 轴的对称点 N/,连结 MN/交 AO 于点 P,此时PMPN=PMPN/=MN 长度最 小。 当 t=10 时,AM=t=10=AB,ON=222t=2 M(10,9) ,N(2,0)N/(2,0) 设直线 MN/的函数关系式为 ,则

25、 21 解得 P(0,) AP=OAOP= 动点 P 的速度为个单位长度/ 秒 【解析】 8如图,在中, ,动点 从点 开始沿着边向点 以的速 度移动(不与点 重合) ,动点 从点 开始沿着边向点 以的速度移动(不与点 重合) 若 、 两 点同时移动; 当移动几秒时,的面积为 设四边形的面积为,当移动几秒时,四边形的面积为? 【答案】 (1)32cm2(2)当移动 秒时,四边形的面积为 【解析】 【分析】 (1)找出运动时间为 t 秒时 PB、BQ 的长度,根据三角形的面积公式结合BPQ 的面积为 32cm2,即可得 出关于 t 的一元二次方程,解之即可得出结论; (2)用ABC 的面积减去B

26、PQ 的面积即可得出 S,令其等于 108 即可得出关于 t 的一元二次方程,解之 即可得出结论 【详解】 22 9如图,已知抛物线 y= x2+bx+c 与坐标轴分别交于点 A(0,8) 、B(8,0)和点 E,动点 C从原点 O 开始沿 OA方向以每秒 1个单位长度移动, 动点 D从点 B开始沿 BO方向以每秒 1 个单位长度移动, 动点 C、 D 同时出发,当动点 D到达原点 O 时,点 C、D 停止运动 (1)直接写出抛物线的解析式: ; (2)求CED 的面积 S 与 D 点运动时间 t 的函数解析式;当 t 为何值时,CED 的面积最大?最大面积是 多少? (3)当CED的面积最大

27、时,在抛物线上是否存在点 P(点 E除外) ,使PCD的面积等于CED 的最大面 积?若存在,求出 P 点的坐标;若不存在,请说明理由 【答案】 (1)y= x2+3x+8; (2)当 t=5 时,S 最大=; (3)P(, )或 P(8,0)或 P ( ,) 【解析】 (1)将点 A(0,8) 、B(8,0)代入抛物线 y= 1 2 x2+bx+c 得: 8 1 6480 2 c bc ,解得:b=3,c=8, 23 抛物线的解析式为:,故答案为:; (3)由(2)知:当 t=5 时,S最大=,当 t=5 时,OC=5,OD=3,C(0,5) ,D(3,0) ,由勾股定理 得:CD=,设直线

28、 CD 的解析式为: ,将 C(0,5) ,D(3,0) ,代入上式得:k=,b=5, 直线 CD 的解析式为:,过 E 点作 EFCD,交抛物线与点 P,如图 1, 24 综上所述:当CED 的面积最大时,在抛物线上存在点 P(点 E 除外) ,使PCD 的面积等于CED 的最大 面积,点 P 的坐标为:P(,)或 P(8,0)或 P( ,) 考点:1二次函数综合题;2二次函数的最值;3动点型;4存在型;5最值问题;6分类讨论;7压 轴题 10如图,已知抛物线 y= 1 2 x2+bx+c 与坐标轴分别交于点点 A(0,8) 、B(8,0)和点 E,动点 C 从原 点 O 开始沿 OA 方向

29、以每秒 1 个单位长度移动,动点 D 从点 B 开始沿 BO 方向以每秒 1 个单位长度移动, 动点 C、D 同时出发,当动点 D 到达原点 O 时,点 C、D 停止运动 25 (1)求该抛物线的解析式及点 E 的坐标; (2) 若 D 点运动的时间为 t, CED 的面积为 S, 求 S 关于 t 的函数关系式, 并求出CED 的面积的最大值 【答案】 (1)y= 1 2 x2+3x+8,E(2,0) ; (2)当 t=5 时,S最大= 25 2 【解析】 试题分析: (1)将点 A(0,8) 、B(8,0)代入抛物线 y= 1 2 x2+bx+c 即可求出抛物线的解析式为:y= 1 2 x

30、2+3x+8;再令 y=0,得: 1 2 x2+3x+8=0,解方程可得点 E 的坐标; (2)根据题意得:当 D 点运动 t 秒时,BD=t,OC=t,然后由点 A(0,8) 、B(8,0) ,可得 OA=8,OB=8, 从而可得 OD=8t,然后令 y=0,点 E 的坐标为(2,0) ,进而可得 OE=2,DE=2+8t=10t,然后利用 三角形的面积公式即可求CED 的面积 S 与 D 点运动时间 t 的函数解析式为:S= 1 2 t2+5t,然后转化为顶 点式即可求出最值为:S最大= 25 2 26 (2)根据题意得:当 D 点运动 t 秒时,BD=t,OC=t, OD=8t, DE=

31、OE+OD=10t, S= 1 2 DEOC= 1 2 (10t)t= 1 2 t2+5t, 即 S= 1 2 t2+5t= 1 2 (t5)2+ 25 2 , 当 t=5 时,S最大= 25 2 考点:二次函数综合题 11 如图 1, 抛物线 2 yxbxc与x轴交于AB、两点, 与y轴交于点0 2C, 连结 AC, 若tan2.OAC (1)求抛物线的解析式; (2)抛物线对称轴上有一动点 P,当90APC时,求出点P的坐标; (3)如图 2 所示,连结BC,M是线段BC上(不与B、C重 合)的一个动点.过点M作直线ll ,交 抛物线于点N,连结CN、BN,设点M的横坐标为当 t 为何值时

32、,BCN的面积最大?最大面积为 多少? 【答案】(1) y=x2-3x+2; ; (2) ( 3 2 , 1 2 )或( 3 2 , 3 2 ) ; (3)t=1 时,SBCN的最大值为 1. 【解析】 试题分析: (1)已知了 C 点的坐标,即可得到 OC 的长,根据OAC 的正切值即可求出 OA 的长,由此可 得到 A 点的坐标,将 A、C 的坐标代入抛物线中,即可确定该二次函数的解析式; (2)根据抛物线的解析式即可确定其对称轴方程,由此可得到点 P 的横坐标;若APC=90 ,则PAE 和 CPD 是同角的余角,因此两角相等,则它们的正切值也相等,由此可求出线段 PE 的长,即可得到点

33、 P 点的坐标; (用相似三角形求解亦可) 27 (3)根据 B、C 的坐标易求得直线 BC 的解析式,已知了点 M 的横坐标为 t,根据直线 BC 和抛物线的解析 式,即可用 t 表示出 M、N 的纵坐标,由此可求得 MN 的长,以 MN 为底,B 点横坐标的绝对值为高,即 可求出BNC 的面积(或者理解为BNC 的面积是CMN 和MNB 的面积和) ,由此可得到关于 S(BNC 的面积) 、t 的函数关系式,根据所得函数的性质即可求得 S 的最大值及对应的 t 的值 抛物线对应的二次函数的解析式为 y=x2-3x+2; (2)存在. 过点 C 作对称轴 l 的垂线,垂足为 D,如图所示,

34、(3)如图所示,易得直线 BC 的解析式为:y=-x+2, 28 点 M 是直线 l和线段 BC 的交点, M 点的坐标为(t,-t+2) (0t2) , MN=-t+2-(t2-3t+2)=-t2+2t, SBCN=SMNC+SMNB= 1 2 MN t+ 1 2 MN (2-t) , = 1 2 MN (t+2-t)=MN=-t2+2t(0t2) , SBCN=-t2+2t=-(t-1)2+1, 当 t=1 时,SBCN的最大值为 1 考点:二次函数综合题 12在ABC 中,ACB=90 ,AC=BC,D 是 AB 的中点,点 E 是边 AC 上的一动点,点 F 是边 BC 上 的一动点

35、(1)若 AE=CF,试证明 DE=DF; (2)在点 E、点 F 的运动过程中,若 DEDF,试判断 DE 与 DF 是否一定相等? 并加以说明 (3)在(2)的条件下,若 AC=2,四边形 ECFD 的面积是一个定值吗?若不是, 请说明理由,若是,请 直接写出它的面积 【答案】 (1)详见解析; (2)详见解析;(3)四边形 ECFD 的面积是一定值 1 【解析】 29 (2)DE 与 DF 一定相等 证明:ABC 中,ACB=90 ,AC=BC,D 是 AB 的中点, A=DCF=45 ,CD= 1 2 AB=AD,CDAB, ADC=EDF=90 , ADE=CDF, 在DAE 和 D

36、CF 中, , DAEDCF(ASA) , DE=DF; 30 13如图,在ABC中,已知ACAB , 0 90BAC ,cmBC6,直线BCCM ,动点 D 从点 C 开始以每秒 2cm 的速度运动到 B 点,动点也同时从点 C 开始沿射线 CM 方向以每秒 1cm 的速度运动 (1)问运动多少秒时,ACEABD,并说明理由 (2)设运动时间为x秒,请用含x的代数式来表示ABD的面积 (3)运动多少秒时,ABD与ACE的面积比为 3:1 【答案】 (1)2; (2)9-3x; (3)12 【解析】 A 31 (2)过点 A 作 AFBC 于点 F, ACAB , 0 90BAC ,cmBC6

37、, AF=3cm 由(1)得,BD=6-2x, 11 (62 )393 . 22 ABD SBD AFxx (3)过点 A 作 AGCM 于点 G, ,可得四边形 AFCG 为矩形, AF=AG, 11 , 22 ABDACE SBD AF SCE AG ,ABD与ACE的面积比为 3:1, BD:CE=3:1, 由(1)得,CE=x,BD=6-2x, (6-2x) :x=3:1, 解得 x=12 运动 12 秒时,ABD与ACE的面积比为 3:1 考点:全等三角形的判定及性质;方程思想的运用 14在平面直角坐标系中,平行四边形如 图放置,点 、 的坐标分别是、,将此平行四 边形绕点 顺时针旋

38、转,得到平行四边形 32 如抛物线经过点 、 、,求此抛物线的解析式; 在情况下,点 是第一象限内抛物线上的一动点,问:当点 在何处时,的面积最大?最大面 积是多少?并求出此时 的坐标; 在的情况下,若 为抛物线上一动点, 为 轴上的一动点,点 坐标为,当 、 、 、 构成以 作为一边的平行四边形时,求点 的坐标 【答案】(1) 抛物线的解析式为:;(2) 当时,的面积最大,最大值, 的坐标为:;(3) 点 的坐标为:, 【解析】 解:平行四边形绕点 顺时针旋转,得到平行四边形,且点 的坐标是, 点的坐标为:, 点 、 的坐标分别是、,抛物线经过点 、 、, 连接,设直线的解析式为:, 33

39、, 解得:, 直线的解析式为:, 设点 的坐标为:, 则, 当时,的面积最大,最大值, 的坐标为:; 设点 的坐标为,当 , , , 构成平行四边形时, 平行四边形中,点 、 的坐标分别是、, 点 的坐标为, 点 坐标为, 为抛物线上一动点, 为 轴上的一动点, 34 15如图,直线 y= 1 2 x+1 与 x 轴交于点 A,与 y 轴交于点 B,抛物线 y=x2+bx+c 经过 A、B 两点 (1)求抛物线的解析式; (2)点 P 是第一象限抛物线上的一点,连接 PA、PB、PO, 若POA 的面积是POB 面积的 4 3 倍求点 P 的坐标; 当四边形 AOBP 的面积最大时,求点 P

40、的坐标; (3)点 M 为直线 AB 上的动点,点 N 为抛物线上的动点,当以点 O、B、M、N 为顶点的四边形是平行四 边形时,请直接写出点 M 的坐标 【答案】 (1)抛物线解析式为 2 3 1 2 yxx ; (2)P( 3 2 ,1) ,P(1,0.5) ; (3)满足条件的点 M 的坐标(1+ 2, 1 2 (1 2) )或(12, 1 2 (1+ 2) )或(1,0.5)或 M 35 (1- 2) , 1 2 (3+ 2) )或 M(1+2) , 1 2 (3 2) ) ; 【解析】 (2)由(1)知,A(2,0) ,B(0,1) ,OA=2,OB=1, 由(1)知,抛物线解析式为

41、 2 3 1 2 yxx 点 P 是第一象限抛物线上的一点, 设 P(a,a2+ 3 2 a+1) , ( (a0,a2+ 3 2 a+10) , SPOA 1 2 =OA Py= 1 2 2 (a2+ 3 2 a+1)=a2+ 3 2 a+1 SPOB= 1 2 OB Px= 1 2 1 a= 1 2 a POA 的面积是POB 面积的 4 3 倍 a2 3 2 +a+1= 4 3 1 2 a, a = 3 2 或 a= 2 3 (舍) P( 3 2 ,1) ; 36 (3)即:满足条件的点 M 的坐标(1+ 2, 1 2 (1 2) )或(12 , 1 2 (1+ 2) )或(1,0.5)

42、 或 M(1- 2) , 1 2 (3+ 2) )或 M(1+2) , 1 2 (3 2) ; 点睛:本题是二次函数的综合题,主要考查了待定系数法,三角形的面积,平行四边形的性质,解本题的 关键是求抛物线解析式.解答(3)时,注意分类讨论. 16 如图,已知抛物线 y=ax2+bx+c 经过 A (1,0) 、B(0,3)及 C(3,0)点,动点 D 从原点 O 开始沿 OB 方向以每秒 1 个单位长度移动,动点 E 从点 C 开始沿 CO 方向以每秒 1 个长度单位移动,动点 D、E 同 时出发,当动点 E 到达原点 O 时,点 D、E 停止运动 (1)求抛物线的解析式及顶点 P 的坐标;

43、(2)若 F(1,0) ,求DEF 的面积 S 与 E 点运动时间 t 的函数解析式;当 t 为何值时,DEF 的面积最 大?最大面积是多少? (3)当DEF 的面积最大时,抛物线的对称轴上是否存在一点 N,使EBN 是直角三角形?若存在,求出 N 点的坐标,若不存在,请说明理由 【答案】 (1)y=x24x+3, (2,1) ; (2)当 t=2 时,S 最大=2; (3)N 点的坐标(2,2) , (2,1) , (2,11 3 ) , 37 (2, 1 3 ) 【解析】 试题分析: (1)根据待定系数法,可得函数解析式,根据配方法,可得顶点坐标; (2)根据三角形的面积公式,可得函数解析

44、式,根据二次函数的性质,可得答案; (3)根据勾股定理的逆定理,可得关于 a 的方程,根据解方程,可得 N 点坐标 (2)如图 1 由题意,得 CE=t,OE=3t,FE=4t,OD=t S= 1 2 FEOD= 1 2 (4t)t= 1 2 t2+2t= 1 2 (t2)2+2, 当 t=2 时,S最大=2; 38 考点:二次函数综合题 17如图,抛物线与 轴交于点 和点,与 轴交于点 ,其对称轴 为 求抛物线的解析式并写出其顶点坐标; 若动点 在第二象限内的抛物线上,动点 在对称轴 上 当,且时,求此时点 的坐标; 当四边形的面积最大时,求四边形面积的最大值及此时点 的坐标 【 答 案 】

45、 , 顶 点 坐 标 为; 点; 当时 , , 【解析】 来源:Z&xx&k.Com 39 令,解得或, 点, 作轴于点 , 点 在上, 设点 ,且, , , 即, 解得(舍去)或, 点; 设,则, 40 , 当时,此时, 所以 18如图,直线与 轴交于点 ,与 轴交于点 ,抛物线 经过 、 两点 求抛物线的解析式; 如图,点 是直线上方抛物线上的一动点,当面积最大时,请求出点 的坐标和面积的最 大值? 在的结论下,过点 作 轴的平行线交直线于点 ,连接,点 是抛物线对称轴上的动点,在抛物 线上是否存在点 ,使得以 、 、 、 为顶点的四边形是平行四边形?如果存在,请直接写出点 的坐标; 如果

46、不存在,请说明理由 【答案】 (1); (2)当时,即点 的坐标是时,的面积最大,最大面积是 ; (3)点 的坐标是、 41 (2)如图 1,过点 E作 y轴的平行线 EF交直线 BC于点 M,EF交 x轴于点 F 点 E是直线 BC上方抛物线上的一动点, 设点 E的坐标是 (x, x2+ x+3) , 则点 M的坐标是 (x, x+3) , EM= x2+ x+3( x+3)= x2+ x,SBEC=SBEM+SMEC = ( x2+ x) 4= x2+3x= (x2)2+3 当 x=2 时,即点 E 的坐标是(2,3)时,BEC的面积最大,最大面积是 3 (3)在抛物线上存在点 P,使得以 P、Q、A、M 为顶点的四边形是平行四边形 如图 2,由(2) ,可得点 M的横坐标是 2 42 解得:或 x0,点 P 的坐标是(3,) 如图 3,由(2) ,可得点 M的横坐标是 2 点 M 在直线 y= x+3上,点 M的坐标是(2, ) 又点 A 的坐标是(2,0) ,AM=, AM 所在的直线的斜率是:; 43 如图 4,由(2) ,可得点 M的横坐标是 2 点 M 在直线 y= x+3上,点