ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:488.75KB ,
资源ID:160300      下载积分:15 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-160300.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【BSD版春季课程初三数学】第12讲:二次函数综合学案(学生版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

【BSD版春季课程初三数学】第12讲:二次函数综合学案(学生版)

1、 二次函数综合 第12讲 适用学科 初中数学 适用年级 初中三年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.二次函数与平行四边形 2.二次函数与等腰三角形 3.二次函数与相似三角形 教学目标 1.掌握二次函数综合 2.掌握二次函数中的数学模型 教学重点 能熟练掌握二次函数综合问题 教学难点 能熟练掌握二次函数综合问题 【教学建议】【教学建议】 本节课的内容属于二次函数综合,是中考中的必考内容。在教学中教师要通过典型例题帮助学生整理、 归纳并反思这些问题的常用处理方法,学会怎么把非特殊问题转换成特殊问题的,形成有效的解题策略。 学生学习本节时可能会在以下三个方面感到困难: 1

2、. 二次函数中平行四边形的存在性问题; 2. 二次函数中等腰三角形的存在性问题; 3.二次函数中相似三角形的存在性问题。 【知识导图】【知识导图】 二次函数综合 二次函数与平行四边形 二次函数与等腰三角形 二次函数与相似三角形 概述 教学过程 【教学建议】【教学建议】 二次函数是中考数学中最重要的内容之一,对于学生来说也是最难的内容。属于中考数学的必考内容,函 数可与几何图形很好地综合,可以全面考察学生多方面的知识和能力,在中考数学试卷中,二次函数试题 往往都扮演着压轴题的角色。本节在中考数学中的地位非常重要,在教学中,教师要帮助学生形成正确地 处理这三种类型试题的策略。 平行四边形动点问题一

3、般分为三个定点一个动点(简称三定一动)和两个定点两个动点(两定两动)这两 种题型,可以利用对角线或边的变化而进行分类讨论;求解的方法主要有代数方法(利用解析式,两点间距 离公式,中点坐标),几何方法(构造全等三角形,相似三角形)等。 处理二次函数中的等腰三角形,常用的模型有两种:一种是“两圆一线”,另一种是“暴力法”(用两点 间距离公式硬算) 常需要分类讨论,一般是固定一个三角形,让另外一个三角形动来处理。常用处理方式有两种: 1.导边处理(“SAS”法) 第一步:先找到一组关键的等角,有时明显,有时隐蔽; 第二步,以这两个相等角的邻边分两种情况对应比例列方程. 2.导角处理(“AA”法) 第

4、一步:先找到一组关键的等角; 第二步,另两个内角分两类对应相等. 一、导入 二、知识讲解 知识点 1 二次函数与平行四边形 知识点 2 二次函数与等腰三角形 知识点 3 二次函数与相似三角形 三、例题精析 【题干】如图 1,在平面直角坐标系中,抛物线 yax 22ax3a(a0)与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),经过点 A 的直线 l:ykxb 与 y 轴负半轴交于点 C,与抛物线的另一个交点为 D,且 CD 4AC (1)直接写出点 A 的坐标,并求直线 l 的函数表达式(其中 k、b 用含 a 的式子表示); (2)点 E 是直线 l 上方的抛物线上的动点,若ACE

5、 的面积的最大值为 5 4 ,求 a 的值; (3)设 P 是抛物线的对称轴上的一点,点 Q 在抛物线上,以点 A、D、P、Q 为顶点的四边形能否成 为矩形?若能,求出点 P 的坐标;若不能,请说明理由 图 1 备用图 【题干】【题干】如图 1,抛物线 yax 2bxc(a、b、c 是常数,a0)的对称轴为 y 轴,且经过(0,0)和 两点,点 P 在该抛物线上运动,以点 P 为圆心的P 总经过定点 A(0, 2) (1)求 a、b、c 的值; (2)求证:在点 P 运动的过程中,P 始终与 x 轴相交; (3)设P 与 x 轴相交于 M(x1, 0)、N(x2, 0)两点,当AMN 为等腰三

6、角形时,求圆心 P 的纵坐标 1 (,) 16 a 例题 1 例题 2 图 1 【题干】【题干】如图 1,在平面直角坐标系中,双曲线(k0)与直线 yx2 都经过点 A(2, m) (1)求 k 与 m 的值; (2)此双曲线又经过点 B(n, 2),过点 B 的直线 BC 与直线 yx2 平行交 y 轴于点 C,联结 AB、AC, 求ABC 的面积; (3)在(2)的条件下,设直线 yx2 与 y 轴交于点 D,在射线 CB 上有一点 E,如果以点 A、C、E 所组成的三角形与ACD 相似,且相似比不为 1,求点 E 的坐标 图 1 【教学建议】【教学建议】 在讲解过程中,教师可以以中考真题

7、入手,先把例题讲解清晰,和学生一起归纳总结处理方法,再给学生 做针对性的练习。 例题 3 四 、课堂运用 基础 1.如图 1,已知抛物线 yx 2bxc 经过 A(0, 1)、B(4, 3)两点 (1)求抛物线的解析式; (2)求 tanABO 的值; (3)过点 B 作 BCx 轴,垂足为 C,在对称轴的左侧且平行于 y 轴的直线交线段 AB 于点 N,交抛物 线于点 M,若四边形 MNCB 为平行四边形,求点 M 的坐标 图 1 2.如图 1,抛物线 yax 2bxc 经过 A(1,0)、B(3, 0)、C(0 ,3)三点,直线 l 是抛物线的对称轴 (1)求抛物线的函数关系式; (2)设

8、点 P 是直线 l 上的一个动点,当PAC 的周长最小时,求点 P 的坐标; (3)在直线 l 上是否存在点 M,使MAC 为等腰三角形,若存在,直接写出所有符合条件的点 M 的 坐标;若不存在,请说明理由 图 1 3.如图 1,已知抛物线(b 是实数且 b2)与 x 轴的正半轴分别交于点 A、B(点 A 位于点 B 是左侧),与 y 轴的正半轴交于点 C (1)点 B 的坐标为_,点 C 的坐标为_(用含 b 的代数式表示); (2)请你探索在第一象限内是否存在点 P,使得四边形 PCOB 的面积等于 2b,且PBC 是以点 P 为 直角顶点的等腰直角三角形?如果存在,求出点 P 的坐标;如

9、果不存在,请说明理由; (3)请你进一步探索在第一象限内是否存在点 Q,使得QCO、QOA 和QAB 中的任意两个三角 2 11 (1) 444 b yxbx 形均相似(全等可看作相似的特殊情况)?如果存在,求出点 Q 的坐标;如果不存在,请说明理由 图 1 1.如图 1,在平面直角坐标系中,已知矩形 ABCD 的三个顶点 B(1, 0)、C(3, 0)、D(3, 4)以 A 为 顶点的抛物线 yax 2bxc 过点 C 动点 P 从点 A 出发, 沿线段 AB 向点 B 运动, 同时动点 Q 从点 C 出发, 沿线段 CD 向点 D 运动点 P、Q 的运动速度均为每秒 1 个单位,运动时间为

10、 t 秒过点 P 作 PEAB 交 AC 于点 E (1)直接写出点 A 的坐标,并求出抛物线的解析式; (2)过点 E 作 EFAD 于 F,交抛物线于点 G,当 t 为何值时,ACG 的面积最大?最大值为多少? (3)在动点 P、Q 运动的过程中,当 t 为何值时,在矩形 ABCD 内(包括边界)存在点 H,使以 C、Q、 E、H 为顶点的四边形为菱形?请直接写出 t 的值 图 1 2.如图 1,点 A 在 x 轴上,OA4,将线段 OA 绕点 O 顺时针旋转 120至 OB 的位置 (1)求点 B 的坐标; (2)求经过 A、O、B 的抛物线的解析式; (3)在此抛物线的对称轴上,是否存

11、在点 P,使得以点 P、O、B 为顶点的三角形是等腰三角形?若存 巩固 在,求点 P 的坐标;若不存在,请说明理由 图 1 3.如图 1,已知抛物线的方程 C1: (m0)与 x 轴交于点 B、C,与 y 轴交于点 E, 且点 B 在点 C 的左侧 (1)若抛物线 C1过点 M(2, 2),求实数 m 的值; (2)在(1)的条件下,求BCE 的面积; (3)在(1)的条件下,在抛物线的对称轴上找一点 H,使得 BHEH 最小,求出点 H 的坐标; (4)在第四象限内,抛物线 C1上是否存在点 F,使得以点 B、C、F 为顶点的三角形与BCE 相似? 若存在,求 m 的值;若不存在,请说明理由

12、 图 1 1.将抛物线 c1:沿 x 轴翻折,得到抛物线 c2,如图 1 所示 (1)请直接写出抛物线 c2的表达式; (2)现将抛物线 c1向左平移 m 个单位长度,平移后得到新抛物线的顶点为 M,与 x 轴的交点从左到右 依次为 A、B;将抛物线 c2向右也平移 m 个单位长度,平移后得到新抛物线的顶点为 N,与 x 轴的交点从左 到右依次为 D、E 当 B、D 是线段 AE 的三等分点时,求 m 的值; 在平移过程中,是否存在以点 A、N、E、M 为顶点的四边形是矩形的情形?若存在,请求出此时 m 的值;若不存在,请说明理由 1 (2)()yxxm m 2 33yx 拔高 图 1 2.如

13、下图,抛物线 2 1 2 yxmxn 与 x 轴交于 A,B 两点,与 y 轴交于点 C,抛物线的对称轴交 x 轴于点 D.已 知 A(-1,0),C(0,2). (1)求抛物线的表达式; (2)在抛物线的对称轴上是否存在点 P,使PCD 是以 CD 为腰的等腰三角形.如果存在,直接写出 P 点的 坐标;如果不存在,请说明理由; 3.如图 1,抛物线经过点 A(4,0)、B(1,0)、C(0,2)三点 (1)求此抛物线的解析式; (2)P 是抛物线上的一个动点,过 P 作 PMx 轴,垂足为 M,是否存在点 P,使得以 A、P、M 为顶 点的三角形与OAC 相似?若存在,请求出符合条件的 点

14、P 的坐标;若不存在,请说明理由; (3)在直线 AC 上方的抛物线是有一点 D,使得DCA 的面积最大,求出点 D 的坐标 , 图 1 1.二次函数与平行四边形的处理方法 2.二次函数与等腰三角形的处理方法 3.二次函数与相似三角形的处理方法 1. 如图,抛物线 yax 2bx3 过点 A(1,0),B(3,0),直线 AD 交抛物线于点 D,点 D 的横坐标为 2,点 P(m,n)是线段 AD 上的动点. (1)求直线 AD 及抛物线的解析式; (2)过点 P 的直线垂直于 x 轴,交抛物线于点 Q,求线段 PQ 的长度 l 与 m 的关系式,m 为何值时,PQ 最长? (3)在平面内是否

15、存在整点(横、纵坐标都为整数)R,使以 P、Q、D、R 四点为顶点的四边形是平行四边 形?若存在,直接写出点 R 的坐标;若不存在,说明理由. 课堂小结 拓展延伸 基础 2. 如图,在平面直角坐标系中,二次函数 y=ax 2+bx+c 交 x 轴于点 A(4,0)、B(2,0),交 y 轴于点 C (0,6),在 y 轴上有一点 E(0,2),连接 AE (1)求二次函数的表达式; (2)若点 D 为抛物线在 x 轴负半轴上方的一个动点,求ADE 面积的最大值; (3)抛物线对称轴上是否存在点 P,使AEP 为等腰三角形?若存在,请直接写出所有 P 点的坐标,若不 存在请说明理由 3.在平面直

16、角坐标系 xOy 中,抛物线 y=1 4x 2+bx+c 经过点 A(2,0),B(8,0) 求抛物线的解析式; 点 C 是抛物线与 y 轴的交点,连接 BC,设点 P 是抛物线上在第一象限内的点,PDBC,垂足为点 D 是否存在点 P ,使线段 PD 的长度最大,若存在,请求出点 P 的坐标;若不存在,请说明理由; 当PDC 与 COA 相似时,求点 P 的坐标 1.如图,已知抛物线 y= 2 1 x 2- 2 3 x-n(n0)与 x 轴交于点 A,B 两点(A 点在 B 点的左边),与 y 轴交于点 C. (1)如图 1,若ABC 为直角三角形,求 n 的值; (2)如图 1,在(1)的

17、条件下,点 P 在抛物线上,点 Q 在抛物线的对称轴上,若以 BC 为边,以点 B,C,P,Q 为顶点的四边形是平行四边形,求 P 点的坐标; 2.如图,抛物线 2 11 4 33 yxx与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接 AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PMx轴,垂足为 点M,PM交BC于点Q,过点P作/PEAC交x轴于点E,交BC于点F. (1)求A,B,C三点的坐标; (2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角 形.若存在,请直接 写出此时点Q的坐标;若不存在,请说明理

18、由; (3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值. 3.如图,已知抛物线 y=ax 2+bx(a0)过点 A( ,3)和点 B(3,0)过点 A 作直线 ACx 轴, x y BA C O 巩固 交 y 轴于点 C (1)求抛物线的解析式; (2)在抛物线上取一点 P,过点 P 作直线 AC 的垂线,垂足为 D连接 OA,使得以 A,D,P 为顶点的三 角形与AOC 相似,求出对应点 P 的坐标; 1.如图,抛物线 yax 26xc 交 x 轴于 A,B 两点,交 y 轴于点 C,直线 yx5 经过点 B,C (1)求抛物线的解析式; (2)过点 A 的直线交直线 B

19、C 于点 M 当 AMBC 时,过抛物线上一动点 P(不与点 B,C 重合),作直线 AM 的平行线交直线 BC 于点 Q,若以 点 A,M,P,Q 为顶点的四边形是平行四边形,求点 P 的横坐标; 连接 AC,当直线 AM 与直线 BC 的夹角等于ACB 的 2 倍时,请直接写出点 M 的坐标 2.如图,在平面直角坐标系中,二次函数 y=ax 2+bx+c 交 x 轴于点 A(4,0)、B(2,0),交 y 轴于点 C(0, 6),在 y 轴上有一点 E(0,2),连接 AE (1)求二次函数的表达式; (2)若点 D 为抛物线在 x 轴负半轴上方的一个动点,求ADE 面积的最大值; (3)

20、抛物线对称轴上是否存在点 P,使AEP 为等腰三角形,若存在,请直接写出所有 P 点的坐标,若不 拔高 存在请说明理由 3.如图,已知直线 y=2x+4 分别交 x 轴、y 轴于点 A、B,抛物线过 A,B 两点,点 P 是线段 AB 上一动点, 过点 P 作 PCx 轴于点 C,交抛物线于点 D (1)若抛物线的解析式为 y=2x 2+2x+4,设其顶点为 M,其对称轴交 AB 于点 N 求点 M、N 的坐标; 是否存在点 P,使四边形 MNPD 为菱形?并说明理由; (2)当点 P 的横坐标为 1 时,是否存在这样的抛物线,使得以 B、P、D 为顶点的三角形与AOB 相似? 若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由 A B C D E O x y