ImageVerifierCode 换一换
格式:PPTX , 页数:34 ,大小:3.87MB ,
资源ID:152295      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-152295.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2.3反证法与放缩法ppt课件)为本站会员(画**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2.3反证法与放缩法ppt课件

1、三反证法与放缩法,第二讲证明不等式的基本方法,学习目标 1.理解反证法的理论依据,掌握反证法的基本步骤,会用反证法证明不等式. 2.理解用放缩法证明不等式的原理,会用放缩法证明一些不等式,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一反证法,思考什么是反证法?用反证法证明时,导出矛盾有哪几种可能?,答案(1)反证法就是在否定结论的前提下推出矛盾,从而说明结论是正确的 (2)矛盾可以是与已知条件矛盾,也可以是与已知的定义、定理矛盾,梳理反证法 (1)反证法的定义:先假设要证明的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行 ,得到和命题的条件(或已证明的定

2、理、性质、明显成立的事实等)矛盾的结论,以说明 不正确,从而证明原命题成立 (2)反证法证明不等式的一般步骤:假设命题不成立;依据假设推理论证;推出矛盾以说明 ,从而断定原命题成立,正确的推理,假设,假设不成立,知识点二放缩法,思考放缩法是证明不等式的一种特有的方法,那么放缩法的原理是什么?,答案不等式的传递性;等量加(减)不等量为不等量,梳理放缩法 (1)放缩法证明的定义 证明不等式时,通常把不等式中的某些部分的值 或 ,简化不等式,从而达到证明的目的这种方法称为放缩法 (2)放缩法的理论依据 不等式的传递性 等量加(减)不等量为 同分子(分母)异分母(分子)的两个分式大小的比较,放大,缩小

3、,不等量,题型探究,类型一反证法证明不等式,命题角度1证明“否定性”结论,即ab2,当且仅当ab1时等号成立,证明,(2)a2a2与b2b2不可能同时成立,证明假设a2a2与b2b2同时成立, 则由a2a2及a0,得0a1; 同理,0b1,从而ab1,这与ab1矛盾 故a2a2与b2b2不可能同时成立,证明,反思与感悟当待证不等式的结论为否定性命题时,常用反证法来证明,对结论的否定要全面不能遗漏,最后的结论可以与已知的定义、定理、已知条件、假设矛盾,跟踪训练1设0a2,0b2,0c2, 求证:(2a)c,(2b)a,(2c)b不可能都大于1.,证明,证明假设(2a)c,(2b)a,(2c)b都

4、大于1, 即(2a)c1,(2b)a1,(2c)b1, 则(2a)c(2b)a(2c)b1, (2a)(2b)(2c)abc1. 0a2,0b2,0c2,,同理(2b)b1,(2c)c1, (2a)a(2b)b(2c)c1, (2a)(2b)(2c)abc1,这与式矛盾 (2a)c,(2b)a,(2c)b不可能都大于1.,命题角度2证明“至少”“至多”型问题,例2已知f(x)x2pxq, 求证:(1)f(1)f(3)2f(2)2;,证明f(1)f(3)2f(2) (1pq)(93pq)2(42pq)2.,证明,则|f(1)|2|f(2)|f(3)|2, 而|f(1)|2|f(2)|f(3)|f

5、(1)f(3)2f(2)2,矛盾,,证明,反思与感悟(1)当欲证明的结论中含有“至多”“至少”“最多”等字眼时,若正面难以找到解题的突破口,可转换视角,用反证法证明 (2)在用反证法证明的过程中,由于作出了与结论相反的假设,相当于增加了题设条件,因此在证明过程中必须使用这个增加的条件,否则将无法推出矛盾,证明,证明假设a,b,c都不大于0,即a0,b0,c0,,30,且(x1)2(y1)2(z1)20, abc0,这与abc0矛盾,因此假设不成立 a,b,c中至少有一个大于0.,类型二放缩法证明不等式,例3已知实数x,y,z不全为零,求证:,证明,由于x,y,z不全为零,故上述三式中至少有一式

6、取不到等号,所以三式相加,得,反思与感悟(1)利用放缩法证明不等式,要根据不等式两端的特点及已知条件(条件不等式),谨慎地采取措施,进行恰当地放缩,任何不适宜的放缩都会导致推证的失败 (2)一定要熟悉放缩法的具体措施及操作方法,利用放缩法证明不等式,就是采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母,或者把和式中各项或某项换成较大或较小的数,从而达到证明不等式的目的,证明,证明k(k1)k2k(k1)(kN且k2),,分别令k2,3,n,得,将这些不等式相加,得,达标检测,1.用放缩法证明不等式时,下列各式正确的是,1,2,3,4,解析对于A,x的正、负不定; 对于B,m的正、负

7、不定; 对于C,x的正、负不定; 对于D,由绝对值三角不等式知,D正确,解析,答案,2.用反证法证明命题“a,b,c全为0”时,其假设为 A.a,b,c全不为0 B.a,b,c至少有一个为0 C.a,b,c至少有一个不为0 D.a,b,c至多有一个不为0,答案,1,2,3,4,1,2,3,4,a0,b0,ab,ab, a0,b0,ab.,解析,答案,1,2,3,4,证明,因为a,b,c均为小于3的正数,,1,2,3,4,显然与相矛盾,假设不成立,故命题得证.,1,2,3,4,1.常见的涉及反证法的文字语言及其相对应的否定假设,规律与方法,2.放缩法证明不等式常用的技巧 (1)增项或减项. (2)在分式中增大或减小分子或分母.,(4)利用函数的单调性等.,