ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:586.56KB ,
资源ID:138998      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-138998.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020届辽宁省高考文科数学押题卷(含答案))为本站会员(h****3)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020届辽宁省高考文科数学押题卷(含答案)

1、辽宁省2022020 年高考押题试卷年高考押题试卷 文数文数 第第卷卷(共共 6060 分分) 一、一、选择题:本大题共选择题:本大题共 1212 个小题个小题,每小题每小题 5 5 分分,共共 6060 分分. .在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有 一项是符合题目要求的一项是符合题目要求的. . 1.设集合 | 23,AxxxZ , 2, 1,0,1,2,3B ,则集合AB为( ) A 2, 1,0,1,2 B 1,0,1,2 C 1,0,1,2,3 D 2, 1,0,1,2,3 2.若复数( ,)zxyi x yR满足13z ii ,则xy的值为( ) A3 B4

2、 C5 D6 3.若 1 cos() 43 ,(0,) 2 ,则sin的值为( ) A 42 6 B 42 6 C 7 18 D 2 3 4.抛掷一枚质地均匀的骰子两次,记事件A两次的点数均为偶数且点数之差的绝对值为2,则 P A ( ) A 1 9 B 1 3 C 4 9 D 5 9 5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90的正角.已知双曲线E: 22 22 1(0,0) xy ab ab ,当其离心率 2,2e时,对应双曲线的渐近线的夹角的取值范围为( ) A0, 6 B, 6 3 C, 4 3 D, 3 2 6.某几何体的三视图如图所示,若该几何体的体积为32,则

3、它的表面积是( ) A 3 13 (3)222 2 B 3 133 ()222 42 C 13 22 2 D 13 22 4 7.函数sinlnyxx在区间 3,3的图象大致为( ) A B C D 8.已知函数 1 3 1 2,2 2 2 ,2,0 2 x x x f x axaR a x ,若 6 3 5 fff ,则a为( ) A1 B3 4 25 C2 2 D 3 4 9.执行如图的程序框图,若输入的x,y,n的值分别为0,1,1,则输出的p的值为( ) A81 B 81 2 C 81 4 D 81 8 10.已知数列 n a是首项为1,公差为2的等差数列,数列 n b满足关系 312

4、 123 1 2 n n n aaaa bbbb ,数 列 n b的前n项和为 n S,则 5 S的值为( ) A454 B450 C446 D442 11.若函数 2 lnf xmxxmx在区间0,内单调递增,则实数m的取值范围为( ) A0,8 B0,8 C ,08, D,08, 12.已知函数( )sin()f xAx(0,0,) 2 AxR 的图象如图所示,令( )( )( )g xf xfx, 则下列关于函数( )g x的说法中不正确的是( ) A函数( )g x图象的对称轴方程为() 12 xkkZ B函数( )g x的最大值为2 2 C函数( )g x的图象上存在点P,使得在P点

5、处的切线与直线l:31yx平行 D方程( )2g x 的两个不同的解分别为 1 x, 2 x,则 12 xx最小值为 2 第第卷(共卷(共 9090 分)分) 二、填空题(每题二、填空题(每题 5 5 分,满分分,满分 2020 分,将答案填在答题纸上)分,将答案填在答题纸上) 13.向量( , )am n ,( 1,2)b ,若向量a ,b 共线,且2ab ,则mn的值为 14.已知点1,0A ,1,0B,若圆 22 86250xyxym上存在点P使0PA PB ,则m的最 小值为 15.设x,y满足约束条件 240 20 10 xy xy y ,则32xy的最大值为 16.在平面五边形AB

6、CDE中, 已知120A ,90B ,120C ,90E , 3AB ,3AE , 当五边形ABCDE的面积6 3,9 3)S时,则BC的取值范围为 三、解答题(本大题共三、解答题(本大题共 6 6 小题,共小题,共 7070 分分. .解答应写出文字说明、证明过程或演解答应写出文字说明、证明过程或演算步骤算步骤. .) 17.在ABC中,角A,B,C所对的边分别为a,b,c,且 222 coscossin3sinsinBCAAB. (1)求角C; (2)若 6 A ,ABC的面积为4 3,M为AB的中点,求CM的长. 18.如图所示的几何体PABCD中,四边形ABCD为菱形,120ABC ,

7、ABa,3PBa, PBAB,平面ABCD 平面PAB,ACBDO,E为PD的中点,G为平面PAB内任一点. (1)在平面PAB内,过G点是否存在直线l使/ /OEl?如果不存在,请说明理由,如果存在,请说明作 法; (2) 过A,C,E三点的平面将几何体PABCD截去三棱锥DAEC, 求剩余几何体AECBP的体积. 19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从 该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计 数据如图所示(视频率为概率) ,根据图中抽样调查数据,回答下列问题: (1)试估算该

8、校高三年级学生获得成绩为B的人数; (2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求当学生获得 的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考 前心理稳定情况是否整体过关? (3) 以每个学生的心理都培养成为健康状态为目标, 学校决定对成绩等级为E的16名学生 (其中男生4人, 女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的 概率. 20.已知椭圆C: 22 22 1(0) xy ab ab 的离心率为 2 2 ,且过点 23 (,) 22 P,动直线l:y

9、kxm交 椭圆C于不同的两点A,B,且0OA OB (O为坐标原点). (1)求椭圆C的方程. (2)讨论 22 32mk是否为定值?若为定值,求出该定值,若不是请说明理由. 21.设函数 22 ( )ln()f xaxxax aR. (1)试讨论函数( )f x的单调性; (2)如果0a 且关于x的方程( )f xm有两解 1 x, 212 ()x xx,证明 12 2xxa. 请考生在请考生在 2222、2323 两题中任选一题作答,如果多做,则按所做的第一题记分两题中任选一题作答,如果多做,则按所做的第一题记分. . 22.选修 4-4:坐标系与参数方程 在直角坐标系xOy中,曲线 1

10、C: 3cos 2sin xt yt (t为参数,0a ) ,在以坐标原点为极点,x轴的非负 半轴为极轴的极坐标系中,曲线 2 C:4sin. (1)试将曲线 1 C与 2 C化为直角坐标系xOy中的普通方程,并指出两曲线有公共点时a的取值范围; (2)当3a 时,两曲线相交于A,B两点,求AB. 23.选修 4-5:不等式选讲 已知函数( )211f xxx . (1)在下面给出的直角坐标系中作出函数( )yf x的图象,并由图象找出满足不等式( )3f x 的解集; (2)若函数( )yf x的最小值记为m,设, a bR,且有 22 abm,试证明: 22 1418 117ab . 试卷

11、试卷答案答案 一、选择题一、选择题 1-5: BCAAD 6-10: AADCB 11、12:AC 二、填空题二、填空题 13. 8 14. 16 15. 22 3 16. 3,3 3 三、解答题三、解答题 17.解: (1)由 222 coscossin3sinsinBCAAB, 得 222 sinsinsin3sinsinCBAAB. 由正弦定理,得 222 3cbaab, 即 222 3cabab. 又由余弦定理,得 222 33 cos 222 abcab C abab . 因为0C ,所以 6 C . (2)因为 6 AC , 所以ABC为等腰三角形,且顶角 2 3 B . 故 22

12、 13 sin4 3 24 ABC SaBa ,所以4a . 在MBC中,由余弦定理,得 222 2cosCMMBBCMB BCB 1 4 162 2 428 2 . 解得2 7CM . 18.解: (1)过G点存在直线l使/ /OEl,理由如下: 由题可知O为BD的中点,又E为PD的中点, 所以在PBD中,有/ /OEPB. 若点G在直线PB上,则直线PB即为所求作直线l, 所以有/ /OEl; 若点G不在直线PB上,在平面PAB内, 过点G作直线l,使/ /lPB, 又/ /OEPB,所以/ /OEl, 即过G点存在直线l使/ /OEl. (2)连接EA,EC,则平面ACE将几何体分成两部

13、分: 三棱锥DAEC与几何体AECBP(如图所示). 因为平面ABCD 平面PAB,且交线为AB, 又PBAB,所以PB 平面ABCD. 故PB为几何体PABCD的高. 又四边形ABCD为菱形,120ABC ,ABa,3PBa, 所以 22 33 2 42 ABCD Saa 四边形 , 所以 1 3 P ABCDABCD VSPB 四边形 23 131 3 322 aaa. 又 1 / / 2 OEPB,所以OE 平面ACD, 所以 D AECE ACD VV 三棱锥三棱锥 3 111 348 ACDP ABCD SEOVa , 所以几何体AECBP的体积 P ABCDD EAC VVV 三棱

14、锥 333 113 288 aaa. 19.解: (1)从条形图中可知这100人中,有56名学生成绩等级为B, 故可以估计该校学生获得成绩等级为B的概率为 5614 10025 , 则该校高三年级学生获得成绩为B的人数约有 14 800448 25 . (2)这100名学生成绩的平均分为 1 (32 10056 907 80 100 3 702 60)91.3 (分) , 因为91.390,所以该校高三年级目前学生的“考前心理稳定整体”已过关. (3)按分层抽样抽取的4人中有1名男生,3名女生,记男生为a,3名女生分别为 1 b, 2 b, 3 b.从中抽取 2人的所有情况为 1 ab, 2

15、ab, 3 ab, 1 2 bb, 1 3 bb, 23 b b, 共6种情况, 其中恰好抽取1名男生的有 1 ab, 2 ab, 3 ab,共3种情况,故所求概率 1 2 P . 20.解: (1)由题意可知 2 2 c a , 所以 2222 22()acab,整理,得 22 2ab, 又点 23 (,) 22 P在椭圆上,所以有 22 23 1 44ab , 由联立,解得 2 1b , 2 2a , 故所求的椭圆方程为 2 2 1 2 x y. (2) 22 32mk为定值,理由如下: 设 11 ( ,)A x y, 22 (,)B xy,由0OA OB , 可知 1 212 0x xy

16、 y. 联立方程组 2 2 1 2 ykxm x y , 消去y,化简得 222 (1 2)4220kxkmxm , 由 2222 168(1)(1 2)0k mmk, 得 22 1 2km, 由根与系数的关系,得 12 2 4 1 2 km xx k , 2 12 2 22 12 m x x k , 由 1 212 0x xy y,ykxm, 得 1 212 ()()0x xkxm kxm, 整理,得 22 1 212 (1)()0kx xkm xxm. 将代入上式,得 2 22 22 224 (1)0 1212 mkm kkmm kk . 化简整理,得 22 2 322 0 12 mk k

17、 ,即 22 322mk. 21.解: (1)由 22 ( )lnf xaxxax,可知 2 ( )2 a fxxa x 22 2(2)()xaxaxa xa xx . 因为函数( )f x的定义域为(0,),所以, 若0a 时,当(0, )xa时,( )0fx ,函数( )f x单调递减, 当( ,)xa时,( )0fx ,函数( )f x 单调递增; 若0a 时,当( )20fxx在(0,)x内恒成立,函数( )f x单调递增; 若0a 时,当(0,) 2 a x时,( )0fx ,函数( )f x单调递减,当(,) 2 a x 时,( )0fx ,函 数( )f x单调递增. (2)要证

18、 12 2xxa,只需证 12 2 xx a . 设 2 2 a g xfxxa x , 因为 2 2 20 a gx x , 所以 g xfx为单调递增函数. 所以只需证 12 0 2 xx ffa , 即证 2 12 12 2 0 a xxa xx , 只需证 12 2 12 21 0xxa xxa . (*) 又 22 111 lnaxxaxm, 22 222 lnaxxaxm, 所以两式相减,并整理,得 12 12 2 12 lnln1 0 xx xxa xxa . 把 12 12 2 12 lnln1xx xxa axx 代入(*)式, 得只需证 12 1212 lnln2 0 xx

19、 xxxx , 可化为 1 2 1 1 2 2 21 ln0 1 x xx x x x . 令 1 2 x t x ,得只需证 21 ln0 1 t t t . 令 21 ln (01) 1 t ttt t , 则 2 22 141 0 11 t t t ttt , 所以 t在其定义域上为增函数, 所以 10t. 综上得原不等式成立. 22.解: (1)曲线 1 C: 3cos 2sin xt yt ,消去参数t可得普通方程为 222 (3)(2)xya. 由4sin,得 2 4 sin.故曲线 2 C:4sin化为平面直角坐标系中的普通方程为 22 (2)4xy. 当两曲线有公共点时a的取值

20、范围为1,5. (2)当3a 时,曲线 1 C: 3cos 2sin xt yt ,即 22 (3)(2)9xy, 联立方程 22 2 2 329 24 xy xy ,消去y,得两曲线交点A,B所在直线方程为 2 3 x . 曲线 22 (2)4xy的圆心到直线 2 3 x 的距离为 2 3 d , 所以 48 2 2 4 93 AB . 23.解: (1)因为( )211f xxx 3 ,1 1 2, 1 2 1 3 , 2 x x xx x x , 所以作出函数( )f x的图象如图所示. 从图中可知满足不等式( )3f x 的解集为 1,1. (2)证明:由图可知函数( )yf x的最小值为 3 2 ,即 3 2 m . 所以 22 3 2 ab,从而 22 7 11 2 ab , 从而 22 22 142( 1)(1) 117 ab ab 22 2222 14214(1) ()5() 1711 ba aabab 22 22 21 4(1)18 52 7117 ba ab . 当且仅当 22 22 14(1) 11 ba ab 时,等号成立, 即 2 1 6 a , 2 4 3 b 时,有最小值, 所以 22 1418 117ab 得证.