ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:894.60KB ,
资源ID:126269      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-126269.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(上海1对3秋季课程讲义-数学-九年级-第19讲-一模复习(二)-学案)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

上海1对3秋季课程讲义-数学-九年级-第19讲-一模复习(二)-学案

1、精锐教育1对3辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题第19讲-一模复习(二)23、24题学习目标1. 熟练掌握相似证明方法;2. 掌握用待定系数法求解二次函数的解析式;3. 能根据题目中的条件,画出与题目相关的图形,继而帮助解题;4. 体会利用几何定理和性质或者代数方法建立方程求解的方法;5. 会应用分类讨论的数学思想和动态数学思维解决相关问题。教学内容针对上节课的内容进行复习和提问,检查和讲解上次课的课后巩固作业 23题常考题型解析相似证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同

2、一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.【题型一】相似与线段比例1:已知:如图,是的边上一点,交边于点,延长到点,使得,联结,交边于点,联结第23题图(1)求证:;(2)如果,求证:例2:

3、如图,已知在四边形中,为边延长线上一点,联结交边于点,联结交于点,且;(1)求证:;(2)若,求证:; (第23题图)检测题1:如图10,已知在中,点在边上,分别是垂足。(1)求证:(2)联结,求证:检测题2: 已知,如图,在中,点、分别在边、上,与相交于点;(1)求证:;(2)若,求证:;【题型二】相似与角度例题:已知菱形ABCD中,AB=8,点G是对角线BD上一点,CG交BA的延长线于点F.(1)求证:(2)如果,且AGBF,求. 检测题:如图,点是正方形对角线上的一个动点(不与、重合),作交边于点,联结、交于点。(1)求证:;(2)若,求的值。【题型三】相似与线段长例题:如图,在与中,与

4、相交于点,.(1)求证:;(2)若,求的长第23题图检测题:如图8,已知等腰梯形ABCD中,ADBC,AD1,BC3,ABCD2,点E在BC边上,AE与BD交于点F,BAEDBC,(1)求证:ABEBCD;(2)求tanDBC的值;(3)求线段BF的长 图8EABCDF24题常考题型解析题型一:平行四边形【思路点拨】已知2个点的平行四边形题目 分类思路:已知边为平行四边形的“边”; 已知边为平行四边形的“对角线”例题:已知一个二次函数的图像经过、三点。(1)求这个二次函数的解析式;(2)若点在轴上,点在(1)中所求出的二次函数的图像上,且以点、为顶点的四边形是平行四边形,求点、的坐标。检测题:

5、如图,二次函数的图像与x轴交于A、B两点,与y轴交于点C,已知点A(-4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上一动点,四边形OCDA的面积为S,求S 关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.题型二:面积+三角比【思路点拨】求某个角的三角比时,直角三角形中,直接求 等角的转化或构造直角三角形(构造时一般要借助题目中的特殊度数, 如30、45或60)例:已知顶点为的抛物线经过点,与轴交于两点(点在点的左侧)。(1) 求这条抛物线

6、的表达式;(2) 联结,求的面积;(3) 点在轴正半轴上,如果,求点的坐标。检测题1:如图,抛物线与轴交于点和点,与轴交于但,抛物线的顶点为点。(1) 求抛物线的表达式并写出顶点的坐标;(2) 在轴上方的抛物线上有一点,若,试求出点的坐标;(3) 设在直线下方的抛物线上有一点,若,试求出点的坐标。检测题2:在平面直角坐标系中,抛物线与轴交于点,与轴的正半轴交于点,点在线段上,且,联结,将线段绕着点顺时针旋转,得到线段,过点作直线轴,垂足为,交抛物线于点.(1) 求这条抛物线的解析式;(2) 联结,求的值;(3) 点在直线上,且,求点的坐标。 题型三:相似【思路点拨】相似分类思路:一般可以找到一

7、组固定相等的角 按边分类-相等角的两边(利用的是两边对于成比例且夹角相等) 按角分类-若上述比例式中的边没法表示时,可按角继续分类例题:如图,直线交轴与点,交轴于点,是坐标原点,且,抛物线经过、三点,(1)求直线和抛物线的解析式;(2)若点,在直线上有点,使得和相似,求出点的坐标;检测题1:如图7,已知抛物线与轴交于点和点(点在点的左侧),与轴交于点,且,点是抛物线的顶点,直线和交于点。(1) 求点的坐标;(2) 联结,求的余切值;(3) 设点在线段延长线上,如果和相似,求点的坐标。检测题2:如图,抛物线经过点,,为抛物线的顶点。(1)求抛物线的解析式及顶点坐标;(2)点关于抛物线的对称点为点

8、,联结,求的正切值;(3)点是抛物线对称轴上一点,且和相似,求点的坐标。题型四:三角比+圆【思路点拨】关于圆与圆的位置关系时,一般充分利用圆与圆的5种位置关系的表达式找相应等量关系。例题:在平面直角坐标系中,抛物线与轴交于点、(点在点的右侧),且与轴正半轴交于点,已知(2,0)(1)当(-4,0)时,求抛物线的解析式;(2)为坐标原点,抛物线的顶点为,当时,求此抛物线的解析式;(3)为坐标原点,以为圆心长为半径画圆,以为圆心,长为半径画圆,当圆与圆外切时,求此抛物线的解析式.题型五:其他【思路点拨】本题思路:利用已知条件构造相似三角形。例题:在直角坐标系中,抛物线的顶点为,它的对称轴与轴交点为

9、。(1) 求点的坐标;(2) 如果该抛物线与轴的交点为,点在抛物线上,且,,求的值。1:、如图,已知正方形,点在的延长线上,联结、,与边交于点,且与交于点G.(1) 求证:.(2)在边上取点,使得,联结交于点.求证:2、已知:如图6,菱形,对角线,交于点,垂足为点,交于点.求证:(1) (2)3、 已知:如图7,在四边形中,对角线交于点,点在边上,联结交线段于点,. (1)求证:; (2)联结,求证:.4、如图,在中,点分别在边上,的平分线分别交线段于点(1) 求证:(2) 联结,若,求与的长.5、如图,在直角坐标系中,抛物线与轴的正半轴相交于点、与轴相交于点,点在线段上,点在此抛物线上,轴,且,与相交于点.(1)求证:;(2)已知,求此抛物线的表达式.6、已知在平面直角坐标系中,二次函数的图像经过点,且与轴相交于点;(1)求这个二次函数的解析式并写出其图像顶点的坐标;(2)求的正弦值;(3)设点在线段的延长线上,且,求点的坐标;7、已知,如图8,在平面直角坐标系中,抛物线与轴正半轴交于点和点,与轴交于点,且,点是第一象限内的点,联结,是以为斜边的等腰直角三角形.(1) 求这个抛物线的表达式;(2) 求点的坐标;(3) 点在轴上,若以为顶点的三角形与以点为顶点的三角形相似,求点的坐标. 19 / 19