ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:636.99KB ,
资源ID:121528      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-121528.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学大一轮复习 第九章 平面解析几何 9.6 双曲线)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学大一轮复习 第九章 平面解析几何 9.6 双曲线

1、9.6双曲线最新考纲考情考向分析了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).主要侧重双曲线的方程以及以双曲线方程为载体,研究参数a,b,c及与渐近线有关的问题,其中离心率和渐近线是重点.以选择、填空题为主,难度为中低档.一般不再考查与双曲线相关的解答题,解题时应熟练掌握基础内容及双曲线方程的求法,能灵活应用双曲线的几何性质.1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合PM|MF1|MF2|2a,|F1F2|2c,其

2、中a,c为常数且a0,c0.(1)当2a|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,),其中c实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a,线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a,b,c的关系c2a2b2 (ca0,cb0)概念方法微思考1.平面内与两定点F1,F2的距离之差的绝对值等于常数2

3、a的动点的轨迹一定为双曲线吗?为什么?提示不一定.当2a|F1F2|时,动点的轨迹是两条射线;当2a|F1F2|时,动点的轨迹不存在;当2a0时,动点的轨迹是线段F1F2的中垂线.2.方程Ax2By21表示双曲线的充要条件是什么?提示若A0,B0,表示焦点在x轴上的双曲线;若A0,表示焦点在y轴上的双曲线.所以Ax2By21表示双曲线的充要条件是AB0,b0,二者没有大小要求,若ab0,ab0,0ab0时,1e0时,e(亦称等轴双曲线),当0a.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)平面内到点F1(0,4),F2(0,4)距离之差的绝对值等于8的点的轨迹是双曲线

4、.()(2)方程1(mn0)表示焦点在x轴上的双曲线.()(3)双曲线方程(m0,n0,0)的渐近线方程是0,即0.()(4)等轴双曲线的渐近线互相垂直,离心率等于.()(5)若双曲线1(a0,b0)与1(a0,b0)的离心率分别是e1,e2,则1(此条件中两条双曲线称为共轭双曲线).()题组二教材改编2.若双曲线1(a0,b0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A. B.5C. D.2答案A解析由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为0,即bxay0,2ab.又a2b2c2,5a2c2.e25,e.3.已知ab0,椭圆C1的方程为1,双曲线C2的方

5、程为1,C1与C2的离心率之积为,则C2的渐近线方程为()A.xy0 B.xy0C.x2y0 D.2xy0答案A解析椭圆C1的离心率为,双曲线C2的离心率为,所以,即a44b4,所以ab,所以双曲线C2的渐近线方程是yx,即xy0.4.经过点A(4,1),且对称轴都在坐标轴上的等轴双曲线方程为_.答案1解析设双曲线的方程为1(a0),把点A(4,1)代入,得a215(舍负),故所求方程为1.题组三易错自纠5.(2016全国)已知方程1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(1,3) B.(1,)C.(0,3) D.(0,)答案A解析方程1表示双曲线,(m2n)(3m

6、2n)0,解得m2n3m2,由双曲线性质,知c2(m2n)(3m2n)4m2(其中c是半焦距),焦距2c22|m|4,解得|m|1,1n0,b0)的一条渐近线经过点(3,4),则此双曲线的离心率为()A. B. C. D.答案D解析由条件知yx过点(3,4),4,即3b4a,9b216a2,9c29a216a2,25a29c2,e.故选D.7.已知双曲线过点(4,),且渐近线方程为yx,则该双曲线的标准方程为_.答案y21解析由双曲线的渐近线方程为yx,可设该双曲线的标准方程为y2(0),已知该双曲线过点(4,),所以()2,即1,故所求双曲线的标准方程为y21.题型一双曲线的定义例1 (1)

7、已知定点F1(2,0),F2(2,0),N是圆O:x2y21上任意一点,点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,则点P的轨迹是()A.椭圆 B.双曲线C.抛物线 D.圆答案B解析如图,连接ON,由题意可得|ON|1,且N为MF1的中点,又O为F1F2的中点,|MF2|2.点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,由垂直平分线的性质可得|PM|PF1|,|PF2|PF1|PF2|PM|MF2|2|F1F2|,由双曲线的定义可得,点P的轨迹是以F1,F2为焦点的双曲线.(2)已知F1,F2为双曲线C:x2y22的左、右焦点,点P在C上,|P

8、F1|2|PF2|,则cosF1PF2_.答案解析由双曲线的定义有|PF1|PF2|PF2|2a2,|PF1|2|PF2|4,则cosF1PF2.引申探究1.本例(2)中,若将条件“|PF1|2|PF2|”改为“F1PF260”,则F1PF2的面积是多少?解不妨设点P在双曲线的右支上,则|PF1|PF2|2a2,在F1PF2中,由余弦定理,得cosF1PF2,|PF1|PF2|8,|PF1|PF2|sin 602.2.本例(2)中,若将条件“|PF1|2|PF2|”改为“0”,则F1PF2的面积是多少?解不妨设点P在双曲线的右支上,则|PF1|PF2|2a2,0,在F1PF2中,有|PF1|2

9、|PF2|2|F1F2|2,即|PF1|2|PF2|216,|PF1|PF2|4,|PF1|PF2|2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF1|PF2|2a,运用平方的方法,建立与|PF1|PF2|的联系.跟踪训练1 设双曲线x21的左、右焦点分别为F1,F2,若点P在双曲线上,且F1PF2为锐角三角形,则|PF1|PF2|的取值范围是_.答案(2,8)解析如图,由已知可得a1,b,c2,从而|F1F2|4,由对称性不妨设P在右支上,设|PF2|m,则|PF1|

10、m2am2,由于PF1F2为锐角三角形,结合实际意义需满足解得1m3,又|PF1|PF2|2m2,22m20,b0).由题意知,2b12,e,b6,c10,a8.双曲线的标准方程为1或1.双曲线经过点M(0,12),M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a12.又2c26,c13,b2c2a225.双曲线的标准方程为1.设双曲线方程为mx2ny21(mn0).解得双曲线的标准方程为1.思维升华 求双曲线标准方程的方法(1)定义法(2)待定系数法当双曲线焦点位置不确定时,设为Ax2By21(AB0).与双曲线1共渐近线的双曲线方程可设为(0);与双曲线1共焦点的双曲线方程可设为1(

11、b2k0,b0)的一条渐近线方程为yx,且与椭圆1有公共焦点,则C的方程为()A.1 B.1C.1 D.1答案B解析由yx,可得. 由椭圆1的焦点为(3,0),(3,0),可得a2b29. 由可得a24,b25.所以C的方程为1.故选B.题型三双曲线的几何性质命题点1与渐近线有关的问题例3已知F1,F2是双曲线C:1(a0,b0)的两个焦点,P是C上一点,若|PF1|PF2|6a,且PF1F2最小内角的大小为30,则双曲线C的渐近线方程是()A.xy0 B.xy0C.x2y0 D.2xy0答案A解析由题意,不妨设|PF1|PF2|,则根据双曲线的定义得,|PF1|PF2|2a,又|PF1|PF

12、2|6a,解得|PF1|4a,|PF2|2a.在PF1F2中,|F1F2|2c,而ca,所以有|PF2|0,b0)的一条渐近线,直线l与圆(xc)2y2a2(其中c2a2b2,c0)相交于A,B两点,若|AB|a,则双曲线C的离心率为_.答案解析由题意可知双曲线的渐近线方程为bxay0,圆(xc)2y2a2的圆心为(c,0),半径为a.因为直线l为双曲线C:1(a0,b0)的一条渐近线,与圆(xc)2y2a2(其中c2a2b2,c0)相交于A,B两点,且|AB|a,所以22a2,即4b23a2,即4(c2a2)3a2,即,又e,且e1,所以e.思维升华 (1)求双曲线的渐近线的方法求双曲线1(

13、a0,b0)或1(a0,b0)的渐近线方程的方法是令右边的常数等于0,即令0,得yx;或令0,得yx.反之,已知渐近线方程为yx,可设双曲线方程为(a0,b0,0).(2)求双曲线的离心率求双曲线的离心率或其范围的方法()求a,b,c的值,由1直接求e.()列出含有a,b,c的齐次方程(或不等式),借助于b2c2a2消去b,然后转化成关于e的方程(或不等式)求解.双曲线的渐近线的斜率k与离心率e的关系:k.跟踪训练3 (2018锦州模拟)已知F1,F2是双曲线1(a0,b0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点B,A,若ABF2为等边三角形,则双曲线的离心率为()A. B.

14、4 C. D.答案A解析因为ABF2为等边三角形,所以不妨设|AB|BF2|AF2|m,因为A为双曲线右支上一点,所以|F1A|F2A|F1A|AB|F1B|2a,因为B为双曲线左支上一点,所以|BF2|BF1|2a,|BF2|4a,由ABF260,得F1BF2120,在F1BF2中,由余弦定理得4c24a216a222a4acos 120,得c27a2,则e27,又e1,所以e.故选A.高考中离心率问题离心率是椭圆与双曲线的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a

15、,b,c的关系式(等式或不等式),并且最后要把其中的b用a,c表示,转化为关于离心率e的关系式,这是化解有关椭圆与双曲线的离心率问题难点的根本方法.例1 已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点.若|AF|BF|4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是()A. B.C. D.答案A解析设左焦点为F0,连接F0A,F0B,则四边形AFBF0为平行四边形.|AF|BF|4,|AF|AF0|4,a2.设M(0,b),则M到直线l的距离d,1b0,b0),由已知,取A点坐标为,取B点坐标为,则C点坐标为且F1(c,0).由ACB

16、F1知0,又,可得2c20,又b2c2a2,可得3c410c2a23a40,则有3e410e230,可得e23或,又e1,所以e.故选B.1.(2018鄂尔多斯调研)已知双曲线1(a0,b0),点(4,2)在它的一条渐近线上,则离心率等于()A. B. C. D.答案B解析渐近线方程为yx,故(4,2)满足方程24,所以,所以e ,故选B.2.(2018新余摸底)双曲线1(a0)的渐近线方程为()A.y2x B.yxC.y4x D.yx答案A解析根据双曲线的渐近线方程知,yx2x,故选A.3.(2018辽宁省五校联考)在平面直角坐标系xOy中,已知双曲线C:1(a0,b0)的离心率为,从双曲线

17、C的右焦点F引渐近线的垂线,垂足为A,若AFO的面积为1,则双曲线C的方程为()A.1 B.y21C.1 D.x21答案D解析因为双曲线C的右焦点F到渐近线的距离|FA|b,|OA|a,所以ab2,又双曲线C的离心率为,所以 ,即b24a2,解得a21,b24,所以双曲线C的方程为x21,故选D.4.已知F1,F2为双曲线C:x2y21的左、右焦点,点P在C上,F1PF260,则|PF1|PF2|等于()A.2 B.4 C.6 D.8答案B解析由双曲线的方程,得a1,c,由双曲线的定义得|PF1|PF2|2.在PF1F2中,由余弦定理,得|F1F2|2|PF1|2|PF2|22|PF1|PF2

18、|cos 60|PF1|2|PF2|2|PF1|PF2|(|PF1|PF2|)2|PF1|PF2|22|PF1|PF2|(2)2,解得|PF1|PF2|4.故选B.5.已知双曲线x21的左、右焦点分别为F1,F2,双曲线的离心率为e,若双曲线上存在一点P使e,则的值为()A.3 B.2 C.3 D.2答案B解析由题意及正弦定理得e2,|PF1|2|PF2|,由双曲线的定义知|PF1|PF2|2,|PF1|4,|PF2|2,又|F1F2|4,由余弦定理可知cosPF2F1,|cosPF2F1242.故选B.6.(2018沈阳模拟)已知双曲线1的右焦点为F,P为双曲线左支上一点,点A(0,),则A

19、PF周长的最小值为()A.4 B.4(1)C.2() D.3答案B解析由题意知F(,0),设左焦点为F0,则F0(,0),由题意可知APF的周长l为|PA|PF|AF|,而|PF|2a|PF0|,l|PA|PF0|2a|AF|AF0|AF|2a22444(1),当且仅当A,F0,P三点共线时取得“”,故选B.7.已知离心率为的双曲线C:1(a0,b0)的左、右焦点分别为F1,F2,M是双曲线C的一条渐近线上的点,且OMMF2,O为坐标原点,若16,则双曲线的实轴长是()A.32 B.16 C.84 D.4答案B解析由题意知F2(c,0),不妨令点M在渐近线yx上,由题意可知|F2M|b,所以|

20、OM|a.由16,可得ab16,即ab32,又a2b2c2,所以a8,b4,c4,所以双曲线C的实轴长为16.故选B.8.(2018葫芦岛模拟)已知双曲线C1:1(a0,b0),圆C2:x2y22axa20,若双曲线C1的一条渐近线与圆C2有两个不同的交点,则双曲线C1的离心率的取值范围是()A. B.C.(1,2) D.(2,)答案A解析由双曲线方程可得其渐近线方程为yx,即bxay0,圆C2:x2y22axa20可化为(xa)2y2a2,圆心C2的坐标为(a,0),半径ra,由双曲线C1的一条渐近线与圆C2有两个不同的交点,得2b,即c24b2,又知b2c2a2,所以c24(c2a2),即

21、c2a2,所以e1,所以双曲线C1的离心率的取值范围为,故选A.9.(2016北京)已知双曲线1(a0,b0)的一条渐近线为2xy0,一个焦点为(,0),则a_;b_.答案12解析由2xy0,得y2x,所以2.又c,a2b2c2,解得a1,b2.10.(2018河北名校名师俱乐部二调)已知F1,F2分别是双曲线x21(b0)的左、右焦点,A是双曲线上在第一象限内的点,若|AF2|2且F1AF245,延长AF2交双曲线的右支于点B,则F1AB的面积等于_.答案4解析由题意知a1,由双曲线定义知|AF1|AF2|2a2,|BF1|BF2|2a2,|AF1|2|AF2|4,|BF1|2|BF2|.由

22、题意知|AB|AF2|BF2|2|BF2|,|BA|BF1|,BAF1为等腰三角形,F1AF245,ABF190,BAF1为等腰直角三角形.|BA|BF1|AF1|42,|BA|BF1|224.11.(2018辽阳模拟)已知焦点在x轴上的双曲线1,它的焦点到渐近线的距离的取值范围是_.答案(0,2)解析对于焦点在x轴上的双曲线1(a0,b0),它的焦点(c,0)到渐近线bxay0的距离为b.双曲线1,即1,其焦点在x轴上,则解得4m0,b0)的右焦点为F,左顶点为A,以F为圆心,FA为半径的圆交C的右支于P,Q两点,APQ的一个内角为60,则双曲线C的离心率为_.答案解析设左焦点为F1,由于双

23、曲线和圆都关于x轴对称,又APQ的一个内角为60,PAF30,PFA120,|AF|PF|ca,|PF1|3ac,在PFF1中,由余弦定理得,|PF1|2|PF|2|F1F|22|PF|F1F|cosF1FP,即3c2ac4a20,即3e2e40,e(舍负).13.(2018营口调研)已知双曲线C:1(a0,b0)的左、右焦点分别为F1,F2,P为双曲线C上第二象限内一点,若直线yx恰为线段PF2的垂直平分线,则双曲线C的离心率为()A. B.C. D.答案C解析如图,直线PF2的方程为y(xc),设直线PF2与直线yx的交点为N,易知N.又线段PF2的中点为N,所以P.因为点P在双曲线C上,

24、所以1,即5a2c2,所以e.故选C.14.已知F1,F2是双曲线1(a0,b0)的左、右焦点,过F1的直线l与双曲线的左支交于点A,与右支交于点B,若|AF1|2a,F1AF2,则等于()A.1 B.C. D.答案B解析如图所示,由双曲线定义可知|AF2|AF1|2a.又|AF1|2a,所以|AF2|4a,因为F1AF2,所以|AF1|AF2|sinF1AF22a4a2a2.由双曲线定义可知|BF1|BF2|2a,所以|BF1|2a|BF2|,又知|BF1|2a|BA|,所以|BA|BF2|.又知BAF2,所以BAF2为等边三角形,边长为4a,所以|AB|2(4a)24a2,所以.15.已知

25、双曲线E:1(a0,b0)的左、右焦点分别为F1,F2,|F1F2|8,P是E右支上的一点,PF1与y轴交于点A,PAF2的内切圆与边AF2的切点为Q.若|AQ|,则E的离心率是()A.2 B.C. D.答案D解析如图所示,设PF1,PF2分别与PAF2的内切圆切于M,N,依题意,有|MA|AQ|,|NP|MP|,|NF2|QF2|,|AF1|AF2|QA|QF2|,2a|PF1|PF2|(|AF1|MA|MP|)(|NP|NF2|)2|QA|2,故a,从而e,故选D.16.已知双曲线1 (a0,b0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|6|PF2|,则此双曲线的离心率e的最大值为_.答案解析由定义,知|PF1|PF2|2a.又|PF1|6|PF2|,|PF1|a,|PF2|a.当P,F1,F2三点不共线时,在PF1F2中,由余弦定理,得cosF1PF2e2,即e2cosF1PF2.cosF1PF2(1,1),e.当P,F1,F2三点共线时,|PF1|6|PF2|,e,综上,e的最大值为.