ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:255.30KB ,
资源ID:113701      下载积分:10 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-113701.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1.2.3 第2课时 平面与平面垂直 课时作业(含答案))为本站会员(可**)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

1.2.3 第2课时 平面与平面垂直 课时作业(含答案)

1、第2课时平面与平面垂直1设,是两个不同的平面,l,m是两条不同的直线,且l,m,则下列说法正确的是()A若l,则 B若,则lmC若l,则 D若,则lm答案A解析l,l,(面面垂直的判定定理),故A正确2如果直线l,m与平面,满足:l,l,m和m,那么必有()A且lm B且mCm且lm D且答案A解析B错,有可能m与相交;C错,可能m与相交;D错,有可能与相交3下列命题中正确的是()A平面和分别过两条互相垂直的直线,则B若平面内的一条直线垂直于平面内的两条平行直线,则C若平面内的一条直线垂直于平面内的两条相交直线,则D若平面内的一条直线垂直于平面内的无数条直线,则答案C解析当平面和分别过两条互相

2、垂直且异面的直线时,平面和有可能平行,故A错;由平面与平面垂直的判定定理知,B,D错,C正确4.如图,已知PA矩形ABCD所在平面,则图中互相垂直的平面有()A1对 B2对C3对 D5对答案D解析DAAB,DAPA,DA平面PAB.同理BC平面PAB,又AB平面PAD,DC平面PAD,平面PAD平面AC,平面PAB平面AC,平面PBC平面PAB,平面PAB平面PAD,平面PDC平面PAD,共5对5如图,在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,将ABD沿BD折起,使平面ABD平面BCD,构成几何体ABCD,则在几何体ABCD中,下列结论正确的是()A平面ABD平面ABCB

3、平面ADC平面BDCC平面ABC平面BDCD平面ADC平面ABC答案D解析由已知得BAAD,CDBD,又平面ABD平面BCD,平面ABD平面BCDBD,CD平面ABD,从而CDAB,故AB平面ADC.又AB平面ABC,平面ABC平面ADC.6下列命题中错误的是()A如果,那么内所有直线都垂直于平面B如果,那么内一定存在直线平行于平面C如果不垂直于平面,那么内一定不存在直线垂直于平面D如果,l,那么l答案A解析若,则内必有垂直于的直线,但并非内所有直线都垂直于,A错7过两点与一个已知平面垂直的平面()A有且只有一个B有无数个C有且只有一个或无数个D可能不存在答案C解析设两点为A,B,平面为,若直

4、线AB,则过A,B与垂直的平面有无数个;若直线AB与不垂直,即直线AB与平行、相交但不垂直或在平面内,均存在唯一平面垂直于已知平面8在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立的是()ABC平面PDFBDF平面PAEC平面PDF平面ABCD平面PAE平面ABC答案C解析如图所示,BCDF,BC平面PDF,A正确由BCPE,BCAE,得BC平面PAE,DF平面PAE,B正确平面ABC平面PAE(BC平面PAE),D正确二、填空题9.如图,A,B,C,D为空间四点,在ABC中,AB2,ACBC,等边三角形ADB以AB为轴运动,当平面ADB平面ABC时,则CD_

5、.答案2解析如图,取AB的中点E,连接DE,CE,因为ADB是等边三角形,所以DEAB.当平面ADB平面ABC时,因为平面ADB平面ABCAB,所以DE平面ABC.又CE平面ABC可知DECE.由已知可得DE,EC1,在RtDEC中,CD2.10如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点若CD2,平面ABCD平面DCEF,则线段MN的长为_答案解析取CD的中点G,连接MG,NG,因为ABCD,DCEF为正方形,且边长为2,所以MGCD,MG2,NG.因为平面ABCD平面DCEF,且平面ABCD平面DCEFCD,所以MG平面DCEF,可得MGNG,所以

6、MN.11.如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足_时,平面MBD平面PCD.(只要填写一个你认为是正确的条件即可)答案DMPC(或BMPC等)解析连接AC,PA底面ABCD,PABD.ACBD,PAACA,BD平面PAC,BDPC.当DMPC(或BMPC)时,即有PC平面MBD,而PC平面PCD,平面MBD平面PCD.三、解答题12.如图,在直三棱柱ABCA1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1DB1C1.求证:(1)EF平面ABC;(2)平面A1FD平面BB1C1C.证明(1)由E,F分别是A1B,

7、A1C的中点知EFBC.因为EF平面ABC,BC平面ABC.所以EF平面ABC.(2)由三棱柱ABCA1B1C1为直三棱柱知CC1平面A1B1C1.又A1D平面A1B1C1,故CC1A1D.又因为A1DB1C1,CC1B1C1C1,故A1D平面BB1C1C,又A1D平面A1FD,所以平面A1FD平面BB1C1C.13如图,已知平面PAB平面ABC,平面PAC平面ABC,AE平面PBC,E点为垂足(1)求证:PA平面ABC;(2)当E为PBC的垂心时,求证:ABC是直角三角形证明(1)在ABC内取一点D,作DFAC于点F,因为平面PAC平面ABC,且交线为AC,所以DF平面PAC,又PA平面PA

8、C,所以DFAP.作DGAB于点G,同理可证DGAP.因为DG,DF都在平面ABC内,且DGDFD,所以PA平面ABC.(2)连接BE并延长,交PC于点H.因为E是PBC的垂心,所以PCBE.又已知AE是平面PBC的垂线,所以PCAE.又BEAEE,所以PC平面ABE.因为AB平面ABE,所以PCAB.又因为PA平面ABC,AB平面ABC,所以PAAB.又PCPAP,所以AB平面PAC.又AC平面PAC,所以ABAC,即ABC是直角三角形14如图所示,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点有以下四个命题:PA平面MOB;MO平面PAC

9、;OC平面PAC;平面PAC平面PBC.其中正确的命题是_(填上所有正确命题的序号)答案解析因为PA平面MOB,所以不正确;因为MOPA,而且MO平面PAC,所以正确;OC不垂直于AC,所以不正确;因为BCAC,BCPA,ACPAA,所以BC平面PAC,所以平面PAC平面PBC,所以正确15.如图,在四棱锥PABCD中,PC平面ABCD,ABDC,DCAC.(1)求证:DC平面PAC;(2)求证:平面PAB平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA平面CEF?说明理由(1)证明PC平面ABCD,DC平面ABCD,PCDC.又ACDC,PCACC,PC平面PAC,AC平面PAC,DC平面PAC.(2)证明ABCD,CD平面PAC,AB平面PAC,又AB平面PAB,平面PAB平面PAC.(3)解棱PB上存在点F,使得PA平面CEF.证明如下:取PB的中点F,连接EF,CE,CF,又E为AB的中点,EF为PAB的中位线,EFPA.又PA平面CEF,EF平面CEF,PA平面CEF.