ImageVerifierCode 换一换
格式:DOCX , 页数:13 ,大小:312.25KB ,
资源ID:107593      下载积分:20 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,更优惠
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.77wenku.com/d-107593.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏专用2020版高考数学大一轮复习第二章函数2.6指数函数教案含解析)为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(发送邮件至373788568@qq.com或直接QQ联系客服),我们立即给予删除!

江苏专用2020版高考数学大一轮复习第二章函数2.6指数函数教案含解析

1、2.6指数函数考情考向分析直接考查指数函数的图象与性质;以指数函数为载体,考查函数与方程、不等式等交汇问题以及实际应用问题,题型一般为填空题,中低档难度1指数函数的定义一般地,函数yax(a0,a1)叫做指数函数,函数的定义域是R.2指数函数的图象与性质a10a0时,y1;x0时,0y0时,0y1;x1(3)在(,)上是单调增函数(3)在(,)上是单调减函数概念方法微思考1如图是指数函数(1)yax,(2)ybx,(3)ycx,(4)ydx的图象,则a,b,c,d与1之间的大小关系为_提示cd1ab02结合指数函数yax(a0,a1)的图象和性质说明ax1(a0,a1)的解集跟a的取值有关提示

2、当a1时,ax1的解集为x|x0;当0a1的解集为x|x0题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)函数y32x与y2x1都不是指数函数()(2)若am0,且a1),则m0,a1)的图象关于y轴对称()题组二教材改编2P71习题T11若函数f(x)ax(a0,且a1)的图象经过点P,则f(1)_.答案解析由题意知a2,所以a,所以f(x)x,所以f(1)1.3P70习题T4已知则a,b,c的大小关系是_答案cbb1,又cba.4P70习题T8设,则实数x的取值范围是_答案解析32x43x2,3x22x10,x1.题组三易错自纠5若函数f(x)(a23)ax为指数函数,

3、则a_.答案2解析由指数函数的定义可得解得a2.6若函数y(a21)x在(,)上为减函数,则实数a的取值范围是_答案(,1)(1,)解析由题意知0a211,即1a22,得a1或1a0,a1)在1,2上的最大值比最小值大,则a的值为_答案或解析当0a1时,a2a,a或a0(舍去)综上所述,a或.题型一指数型函数的图象例1(1)函数f(x)1e|x|的图象大致是_答案解析f(x)1e|x|是偶函数,图象关于y轴对称,又e|x|1,f(x)0.符合条件的图象只有.(2)若函数y|4x1|在(,k上单调递减,则k的取值范围为_答案(,0解析函数y|4x1|的图象是由函数y4x的图象向下平移一个单位后,

4、再把位于x轴下方的图象沿x轴翻折到x轴上方得到的,函数图象如图所示由图象知,其在(,0上单调递减,所以k的取值范围是(,0思维升华 (1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到特别地,当底数a与1的大小关系不确定时应注意分类讨论跟踪训练1方程2x2x的解的个数是_答案1解析方程的解可看作函数y2x和y2x的图象交点的横坐标,分别作出这两个函数的图象(如图)由图象得只有一个交点,因此该方程只有一个解题型二指数函数的性质命题点1比较指数式的大小例2(1)已知则a,b,c的大小

5、关系是_(用“”连接)答案ba220,可知b15a15c15,所以bac.(2)若1a”连接)答案3aa3解析易知3a0,0,a30,又由1a0,得0a1,所以(a)3,即a3,因此3aa3.命题点2解简单的指数方程或不等式例3(1)已知实数a1,函数f(x)若f(1a)f(a1),则a的值为_答案解析当a1时,代入不成立故a的值为.(2)若偶函数f(x)满足f(x)2x4(x0),则不等式f(x2)0的解集为_答案x|x4或x0解析f(x)为偶函数,当x0,则f(x)f(x)2x4,f(x)当f(x2)0时,有或解得x4或x4或x0思维升华指数函数的单调性和底数大小有关,应用函数的单调性最重

6、要的是“同底”原则跟踪训练2(1)已知f(x)2x2x,则f(a),f(b)的大小关系是_答案f(b)f(b)(2)函数f(x)x2bxc满足f(x1)f(1x),且f(0)3,则f(bx)与f(cx)的大小关系是_答案f(bx)f(cx)解析f(x1)f(1x),f(x)关于x1对称,易知b2,c3,当x0时,b0c01,f(bx)f(cx),当x0时,3x2x1,又f(x)在(1,)上单调递增,f(bx)f(cx),当x0时,3x2x1,又f(x)在(,1)上单调递减,f(bx)0),则yt22t的单调增区间为1,),令2x1,得x0,又y2x在R上单调递增,所以函数f(x)4x2x1的单

7、调增区间是0,)(3)若函数有最大值3,则a_.答案1解析令h(x)ax24x3,yh(x),由于f(x)有最大值3,所以h(x)应有最小值1,因此必有解得a1,即当f(x)有最大值3时,a的值为1.思维升华求解与指数函数有关的复合函数问题,要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断跟踪训练3(1)已知maxa,b表示a,b两数中的最大值若f(x)maxe|x|,e|x2|,则f(x)的最小值为_答案e解析f(x)maxe|x|,e|x2|当x1时,f(x)e,且当x1时,取得最小值e;当xe.故f(x)的最小值为f(1)e.(2)若不等式12

8、x4xa0在x(,1时恒成立,则实数a的取值范围是_答案解析从已知不等式中分离出实数a,得a.函数yxx在R上是减函数,当x(,1时,xx,从而得.故实数a的取值范围为.1若指数函数f(x)(a23)x满足f(2)1,即a24,得a2.2已知函数f(x)5x,若f(ab)3,则f(a)f(b)_.答案3解析f(x)5x,f(ab)5ab3,f(a)f(b)5a5b5ab3.3设a0.60.6,b0.61.5,c1.50.6,则a,b,c的大小关系是_(用“”连接)答案bac解析因为函数y0.6x在R上单调递减,所以b0.61.5a0.60.61,所以bax4,即x23x40,1x0,a1)满足

9、f(1),则f(x)的单调递减区间是_答案2,)解析由f(1),得a2,所以a或a(舍去),即f(x)|2x4|.由于y|2x4|在(,2上单调递减,在2,)上单调递增,所以f(x)在(,2上单调递增,在2,)上单调递减7已知函数f(x)的值域是8,1,则实数a的取值范围是_答案3,0)解析当0x4时,f(x)8,1,当ax0时,f(x),所以8,1,即81,即3aa”是“函数f(x)xm的图象不过第三象限”的必要不充分条件,则实数a能取的最大整数为_答案1解析f(0)m,函数f(x)的图象不过第三象限等价于m0,即m,“ma”是“m”的必要不充分条件,a,则实数a能取的最大整数为1.9已知函

10、数f(x)2x,函数g(x)则函数g(x)的最小值是_答案0解析当x0时,g(x)f(x)2x为单调增函数,所以g(x)g(0)0;当xg(0)0,所以函数g(x)的最小值是0.10当x(,1时,不等式(m2m)4x2x0恒成立,则实数m的取值范围是_答案(1,2)解析原不等式变形为m2mx,因为函数yx在(,1上是减函数,所以x12,当x(,1时,m2mx恒成立等价于m2m2,解得1m0,a1)的图象经过点A(1,6),B(3,24)(1)求f(x)的表达式;(2)若不等式xxm0在(,1上恒成立,求实数m的取值范围解(1)因为f(x)的图象过A(1,6),B(3,24),所以所以a24,又

11、a0,所以a2,b3.所以f(x)32x.(2)由(1)知a2,b3,则当x(,1时,xxm0恒成立,即mxx在(,1上恒成立又因为yx与yx在(,1上均为减函数,所以yxx在(,1上也是减函数,所以当x1时,yxx有最小值,所以m,即m的取值范围是.13设函数f(x)则满足f(f(a)2f(a)的a的取值范围是_答案解析令f(a)t,则f(t)2t.当t1时,3t12t,令g(t)3t12t,则g(t)32tln2,当t0,g(t)在(,1)上单调递增,即g(t)0,则方程3t12t无解当t1时,2t2t成立,由f(a)1,得a1,且3a11,解得a0.当m1n时,函数f(x)在区间m,n上

12、的最大值与最小值的差为f(x)maxf(x)min2|2|203,则nm取得最大值(21)(21)4,所以nm的取值范围是(0,415设f(x)|2x11|,af(c),则2a2c_4.(选填“”“”“”)答案解析f(x)在(,1上是减函数,在1,)上是增函数,故结合条件知必有a1.若c1,则2a2,2c2,故2a2c1,则由f(a)f(c),得12a12c11,即2c12a12,即2a2c4.综上知,总有2a2c4.16已知函数f(x)4(1x2)(1)若,求函数f(x)的值域;(2)若方程f(x)0有解,求实数的取值范围解(1)f(x)42x2x4(1x2)设tx,得g(t)t22t4.当时,g(t)t23t42.所以g(t)maxg,g(t)ming.所以f(x)max,f(x)min,故函数f(x)的值域为.(2)方程f(x)0有解可转化为22x(1x2)设(x)22x,当2x,即x1时,(x)min2;当2x4,即x2时,(x)max.函数(x)的值域为.故实数的取值范围是.13